

Site Assessment Report for Tank Site 283

Naval Station Mayport

Mayport, Florida

Southern Division Naval Facilities Engineering Command Contract Number N62467-94-D-0888 Contract Task Order 0230

December 2003

FOR TANK SITE 283

NAVAL STATION MAYPORT MAYPORT, FLORIDA

COMPREHENSIVE LONG-TERM ENVIRONMENTAL ACTION-NAVY (CLEAN) CONTRACT

Submitted to:
Southern Division
Naval Facilities Engineering Command
2155 Eagle Drive
North Charleston, South Carolina 29406

Submitted by:
Tetra Tech NUS, Inc.
661 Andersen Drive
Foster Plaza 7
Pittsburgh, Pennsylvania 15220

CONTRACT NUMBER N62467-94-D-0888 CONTRACT TASK ORDER 0230

DECEMBER 2003

PREPARED UNDER THE SUPERVISION OF:

MARK A. PETERSON, P.G. TASK ORDER MANAGER TETRA TECH NUS, INC. JACKSONVILLE, FLORIDA APPROVED FOR SUBMITTAL BY:

whoblewski

DEBBIE WROBLEWSKI PROGRAM MANAGER TETRA TECH NUS, INC. PITTSBURGH, PENNSYLVANIA

PROFESSIONAL CERTIFICATION

Site Assessment Report Site 283 Naval Station Mayport Mayport, Florida

This Site Assessment Report was prepared in general accordance with Chapter 62-770, Florida Administrative under the direct supervision of the undersigned geologist using geologic and hydrogeologic principles standard to the profession at the time the report was prepared. If conditions are determined to exist that differ from those described, the undersigned geologist should be notified to evaluate the effects of additional information on the assessment described in this report. This report was developed specifically for the referenced site and should not be construed to apply to any other site.

Mark Peterson, P.G.

Florida License Number PG-0001852

12/17/03

Date

TABLE OF CONTENTS

SECT	<u>ION</u>		PAGE
ACRO	ONYMS		vii
EXEC	UTIVE S	SUMMARY	ES-1
1.0	INTRO 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9	PURPOSE AND SCOPE FACILITY AND SITE LOCATION REGIONAL GEOLOGY AND HYDROGEOLOGY POTABLE WATER WELL SURVEY TOPOGRAPHY AND DRAINAGE LAND USE IN SITE VICINITY SITE DESCRIPTION SITE HISTORY AND OPERATIONS PURPOSE OF CURRENT INVESTIGATION	1-11-41-61-61-6
2.0	SUBS 2.1 2.2 2.3 2.3.1 2.3.2 2.3.3 2.4 2.4.1 2.4.2	QUALITY ASSURANCE DETERMINATION OF GROUNDWATER FLOW DIRICTION SOIL QUALITY ASSESSMENT Soil Borings Field Screening Procedures Soil Sampling Strategy for Laboratory Analysis GROUNDWATER ASSESSMENT METHODS Groundwater Sampling Monitoring Well Installation	2-12-12-12-22-22-22-4
3.0	RESU 3.1 3.1.1 3.1.2 3.1.3 3.2 3.3 3.3.1 3.3.2 3.4 3.4.1 3.4.2	LTS OF INVESTIGATION SITE GEOLOGY AND HYDROGEOLOGY Lithology Groundwater Flow Direction Aquifer Classification and Characteristics SOIL SCREENING RESULTS SOIL SAMPLE ANALYTICAL RESULTS Mobile Laboratory Fixed-Base Laboratory GROUNDWATER ANALYTICAL RESULTS Mobile Laboratory Fixed-Base Laboratory Fixed-Base Laboratory	3-13-13-13-13-43-43-83-18
4.0	CONC	CLUSIONS AND RECOMMENDATIONS	4-1
REFE	RENCES		R-1

APPENDICES

Α	SAR SUMMARY SHEET	A -1
В	TANK CLOSURE REPORT, HYDRO-TERRA, 1993	B-1
С	SOIL BORING LOG	
D	WELL COMPLETION LOG	
E	FIELD FORMS	E- 1
F	MOBILE LABORATORY ANALYTICAL RESULTS	F-1
G	FIXED-BASE LABORATORY ANALYTICAL RESULTS	G-1
	TABLES	
MBER		PAGE

<u>NUMBER</u>		<u>PAGE</u>
1-1	Potable Water Well Survey Results	1-6
3-1	Groundwater Elevation Measurements	
3-2	Soil Vapor Measurements	3-5
3-3	Mobile Laboratory Soil Results	
3-4	Summary of Fixed-Base Laboratory Soil Sample Results	
3-5	Mobile Laboratory Groundwater Results	
3-6	Summary of Fixed-Base Laboratory Groundwater Results	

FIGURES

<u>NUMBER</u>		<u>PAGE</u>
1-1	Site Vicinity Map	1-2
1-2	Site Location Map	1-3
1-3	Potable Water Well Locations	1-5
1-4	USGS Topographic Map	
1-5	Site Plan	1-8
2-1	Soil and Groundwater Sample Location Map	
3-1	Potentiometric Surface Contour Map, July 10, 2002	
3-2	Soil Analytical Results Exceeding Residential SCTLs	
3-3	Soil Analytical Results Exceeding Industrial SCTLs	
3-4	Soil Analytical Results Exceeding Leachability SCTLs	

ACRONYMS

AST Aboveground Storage Tank

BTEX Benzene, Toluene, Ethylbenzene, and Total Xylenes

bls Below Land Surface

CLEAN Comprehensive Long-term Environmental Action Navy

CompQAP Comprehensive Quality Assurance Plan

CTO Contract Task Order
DPT Direct Push Technology
EDB Ethylene Dibromide

FAC Florida Administrative Code

FDEP Florida Department of Environmental Protection

FID Flame Ionization Detector

FL-PRO Florida Petroleum Range Organics

ft Foot or Feet ft/day Feet per Day ft/ft Feet per Foot

GAG Gasoline Analytical Group

HSAs Hollow Stem Augers

ID Inside Diameter

KAG Kerosene Analytical Group
μg/kg Micrograms per Kilogram
μg/L Micrograms per Liter

Million College per Day

mgd Million Gallons per Day
mg/kg Milligrams per Kilogram
MTBE Methyl Tert-Butyl Ether

NAVSTA Naval Station

Navy United States Navy
OVA Organic Vapor Analyzer

PAHs Polynuclear Aromatic Hydrocarbons

ppm Parts per Million
PVC Polyvinyl Chloride
SA Site Assessment

SAR Site Assessment Report
SCTLs Soil Cleanup Target Levels

TBM Temporary Benchmark
TCR Tank Closure Report

ACRONYMS (Continued)

TRPH Total Recoverable Petroleum Hydrocarbons

TtNUS Tetra Tech NUS, Inc.

USACE United States Army Corps of Engineers
USDA United States Department of Agriculture

USEPA United States Environmental Protection Agency

USGS United States Geological Survey

UST Underground Storage Tank
VOCs Volatile Organic Compounds

EXECUTIVE SUMMARY

Tetra Tech NUS, Inc. (TtNUS) has completed a Site Assessment (SA) at Tank Site 283, Naval Station (NAVSTA) Mayport, Mayport, Florida, in accordance with the requirements of Chapter 62-770, Florida Administrative Code (FAC). This Site Assessment Report (SAR) is being submitted to the Florida Department of Environmental Protection (FDEP) for approval. A SAR summary sheet is included as Appendix A.

TtNUS performed the following tasks during the SA:

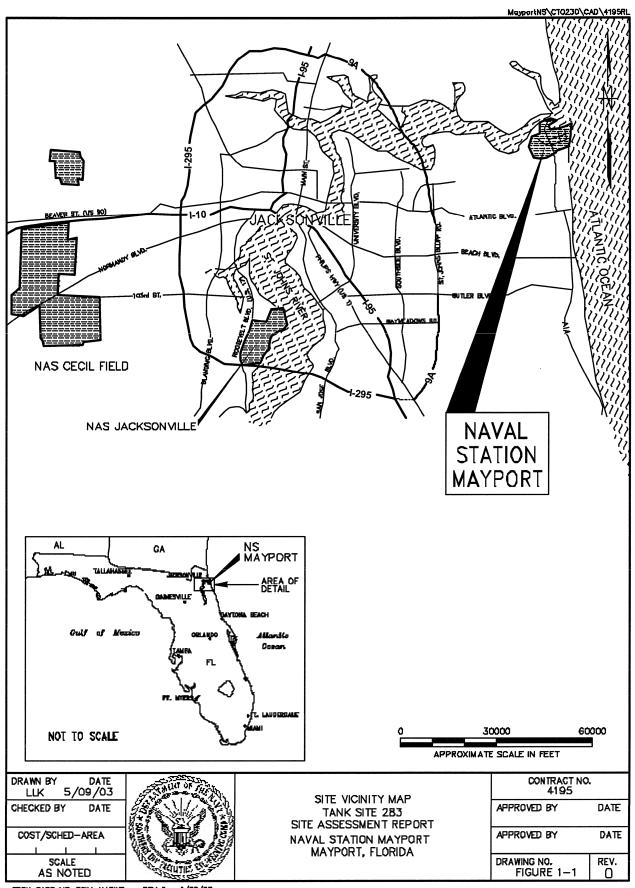
- Reviewed available United States Navy (Navy) documents and identified potential sources and receptors for petroleum hydrocarbons in the vicinity, evaluated private potable wells within a 0.25-mile radius and public water supply wells within a 0.5-mile radius, located nearby surface water bodies, and determined surface hydrology and drainage.
- Conducted a site survey to construct a site plan and collected two rounds of depth to groundwater measurements to evaluate the groundwater flow direction and gradient.
- Advanced soil borings using direct push technology (DPT) and hand augers to collect soil and groundwater samples. Soil and groundwater samples were analyzed for petroleum impacts by a mobile laboratory and a fixed-base laboratory. One soil sample was analyzed for the complete Gasoline Analytical Group (GAG) and Kerosene Analytical Group (KAG) analytical group per Chapter 62-770, FAC. Additional analyses were conducted for polynuclear aromatic hydrocarbons (PAHs).
- Installed one shallow monitoring and collected a groundwater sample. The sample was analyzed by a fixed-base laboratory for GAG and KAG per Chapter 62-770, FAC.
- Reviewed historical documents that described the lack of groundwater impacts and the presence
 of soil vapor readings from an organic vapor analyzer (OVA) at levels considered not to be
 excessively contaminated.

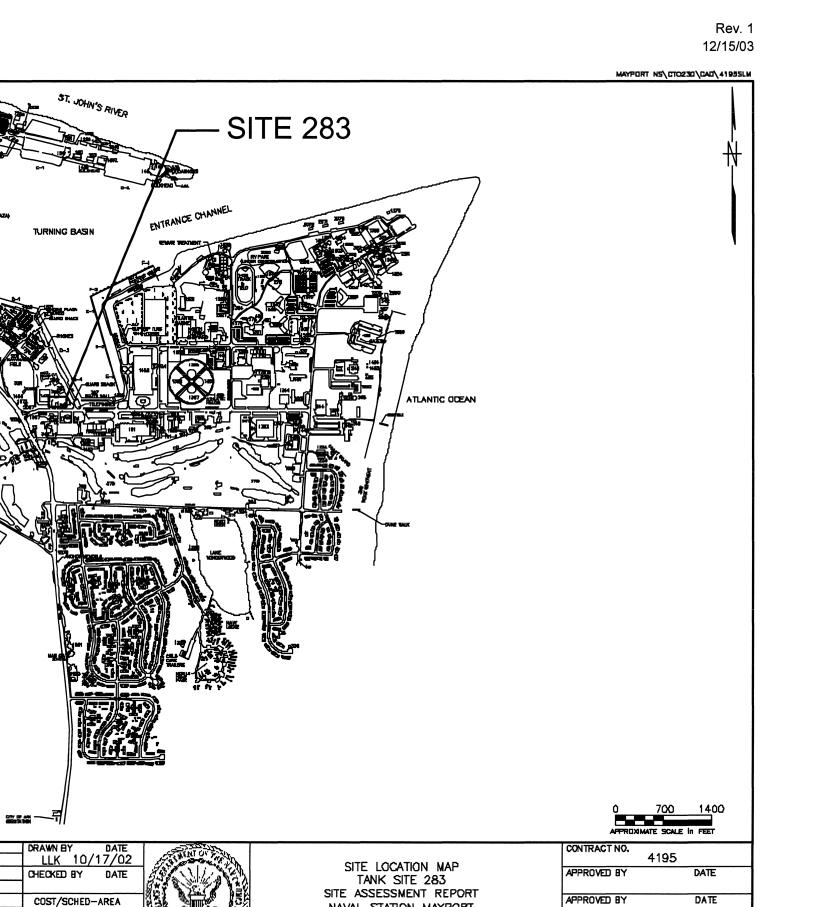
The results of the SA revealed soil exceeding the soil cleanup target levels (SCTLs), as defined by Chapter 62-770, FAC, in the area of former storage tanks. The groundwater at the site did not contain detectable petroleum hydrocarbons.

Based on the results of this SA, TtNUS recommends a source removal be conducted to remove shallow soils containing PAHs above FDEP SCTLs.

1.0 INTRODUCTION

1.1 PURPOSE AND SCOPE


A SA was conducted at Tank Site 283 at NAVSTA Mayport by TtNUS for the Southern Division, Naval Facilities Engineering Command under Contract Task Order (CTO) 0230 for the Comprehensive Long-term Environmental Action Navy (CLEAN) III Contract Number N62467-94-D-0888. The data collected during the investigation was used to prepare a SAR. Information from the field investigation has been assimilated into this SAR to provide a characterization of site conditions from which to base future courses of action. A SAR summary sheet is included as Appendix A.


The purpose of this SA was to evaluate the extent of petroleum hydrocarbons in subsurface soils and groundwater at Tank Site 283 in accordance with the requirements of Chapter 62-770, FAC. Tank Site 283 was previously investigated in December 1992 during removal and closure of an aboveground storage tank (AST) used as a day tank and an underground storage tanks (UST). Excessively contaminated soil and petroleum-impacted groundwater was documented in the Tank Closure Report (TCR) [Hydro-Terra, 1992], which is provided as Appendix B.

1.2 FACILITY AND SITE LOCATION

NAVSTA Mayport is located within the corporate limits of the City of Jacksonville, Duval County, Florida, approximately 14 miles to the northeast of downtown Jacksonville and is adjacent to the town of Mayport. A Site Vicinity Map is provided as Figure 1-1. The Station complex is located on the northern end of a peninsula bound by the Atlantic Ocean to the east and the St. Johns River to north. NAVSTA Mayport occupies the entire northern part of the peninsula except for the town of Mayport, which is located to the west between the station and the St. Johns River.

Tank Site 283 is located on the north side of Massey Avenue approximately 500 feet (ft) to the west of the south leg of the turning basin. A Site Location Map based on a United States Geological Survey (USGS) topographic map (Mayport, Florida revised 1992) is provided as Figure 1-2. Since about 1992, the fuel systems, generator, and pump house at Tank Site 283 have been removed, but the large water tank (Tank Number 288) remains at the site. The area has become an open yard with mostly gravel-covered parking and some asphalt and grassy areas, which is used by private contractors as a work yard and general storage area. Several utilities traverse the site.

NO.	DATE	REVISIONS	BY	CHKD	APPD	REFERENCES	DRAWN BY DATE
							DRAWN BY DATE LLK 10/17/02
							CHECKED BY DATE
							CHECKED BY DATE COST/SCHED-AREA
							SGALE
							AS NOTED

VILLAGE OF MAYPORT

NAVAL STATION MAYPORT MAYPORT, FLORIDA

DRAWING NO. FIGURE 1-2

FORM CADD NO. SON_BH.DWG - REV 0 - 1/2D/98

04JAX0014

1.3 REGIONAL GEOLOGY AND HYDROGEOLOGY

Northeast Florida is underlain by two main aquifer systems: the surficial aquifer system and the Floridan aquifer system. The surficial aquifer system in the vicinity of NAVSTA Mayport includes sediments of the Upper Hawthorn Group, upper Miocene and Pliocene deposits, and Pleistocene and Holocene deposits [United States Department of Agriculture (USDA), 1978]. These undifferentiated surficial deposits extend from land surface to the top of the Hawthorn Group about 50 ft below land surface (bls) (USGS, 1997).

The surficial aquifer system consists of fine-grained sands near the surface interspersed with thin (less than 1 ft) clay lenses and generally grades to a mixture of sand and coarse shell fragments from 30 to 40 ft bls. The base of the surficial aquifer system is the intermediate confining unit, which is a sequence of marine clays and discontinuous limestone stringers (Spechler, 1994).

The Floridan aquifer system is the principal source of groundwater for public drinking water in most of northern peninsular Florida. In the area of investigation, the system is comprised of (from youngest to oldest) the Ocala Formation, the Avon Park Formation, and the Oldsmar Limestone. The Hawthorn Group, a confining unit between the surficial aquifer system and Floridan aquifer system, unconformably overlies the Floridan aquifer (USDA, 1978).

1.4 POTABLE WATER WELL SURVEY

The potable water supply information presented in this report was obtained from a Contamination Assessment Report for Site 1330 prepared by the United States Army Corps of Engineers (USACE) in 1992 (USACE, 1992). Personnel at the water treatment plant and the maintenance contractor, Johnson Controls/HILL, confirm the accuracy of the water well information.

Potable water is supplied to NAVSTA Mayport by four on-base supply wells. Currently, three of the wells are active and one is inactive. One of the three active wells is 12 inches in diameter, and the other two are 16-inch diameter wells. All three wells draw water from the Floridan aquifer at depths of 1,000 ft. Well capacities range between 2.1 and 2.9 million gallons per day (mgd) with a combined total pumping capacity of 9 mgd. The base water treatment plant treats the water prior to distribution.

The locations of the potable wells are depicted on Figure 1-3. Potable well information is summarized on Table 1-1. Three wells are within a 0.50-mile radius of the study site.

Rev. 1 12/15/03

MayportNS\CTO230\CAD\4195WS ATLANTIC OCEAN ST. JOHNS RIVER **TANK** SITE 283 TURNING BASIN AIR STATION MAYPORT BON HOMME RICHARD BALTAMORE STREE U.S. COAST GUARI BASE MAYE PATROL STREET MASSEY AVENUE MOALE AVENUE ISPOIL AREA MAINE STREET SPOIL AREA ATLANTIC OCEAN STATION BOUNDARY **LEGEND** POTABLE WATER WELL 5000 SCALE IN FEET DATE 10/25/02 CONTRACT NO. 4195 DRAWN BY LLK POTABLE WATER WELL LOCATIONS CHECKED BY DATE APPROVED BY DATE TANK SITE 283 SITE ASSESSMENT REPORT COST/SCHED-AREA APPROVED BY DATE NAVAL STATION MAYPORT

SCALE AS NOTED MAYPORT, FLORIDA

DRAWNG NO. FIGURE 1-3

REV.

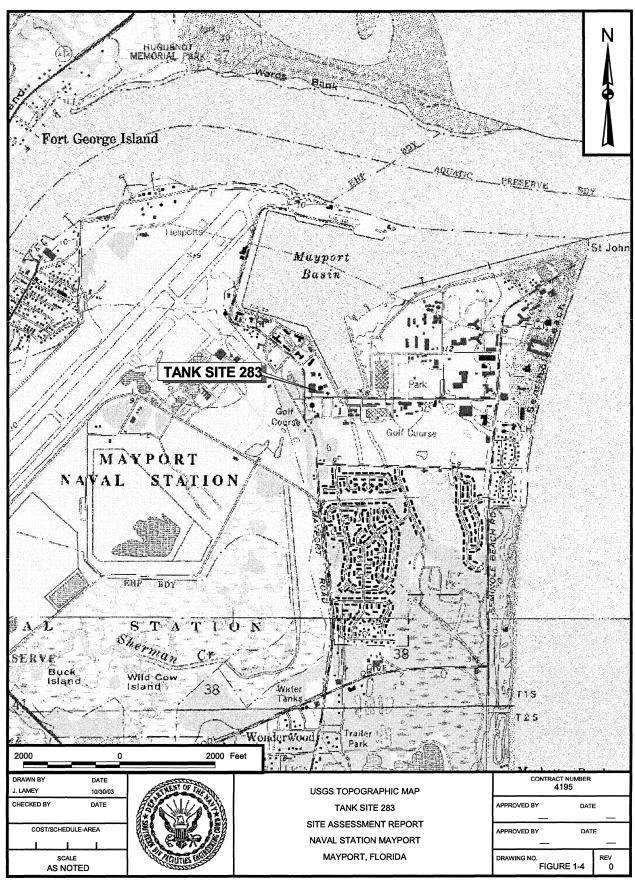
Table 1-1 Potable Water Well Survey Results

Site Assessment Report, Tank Site 283 Naval Station Mayport Mayport, Florida

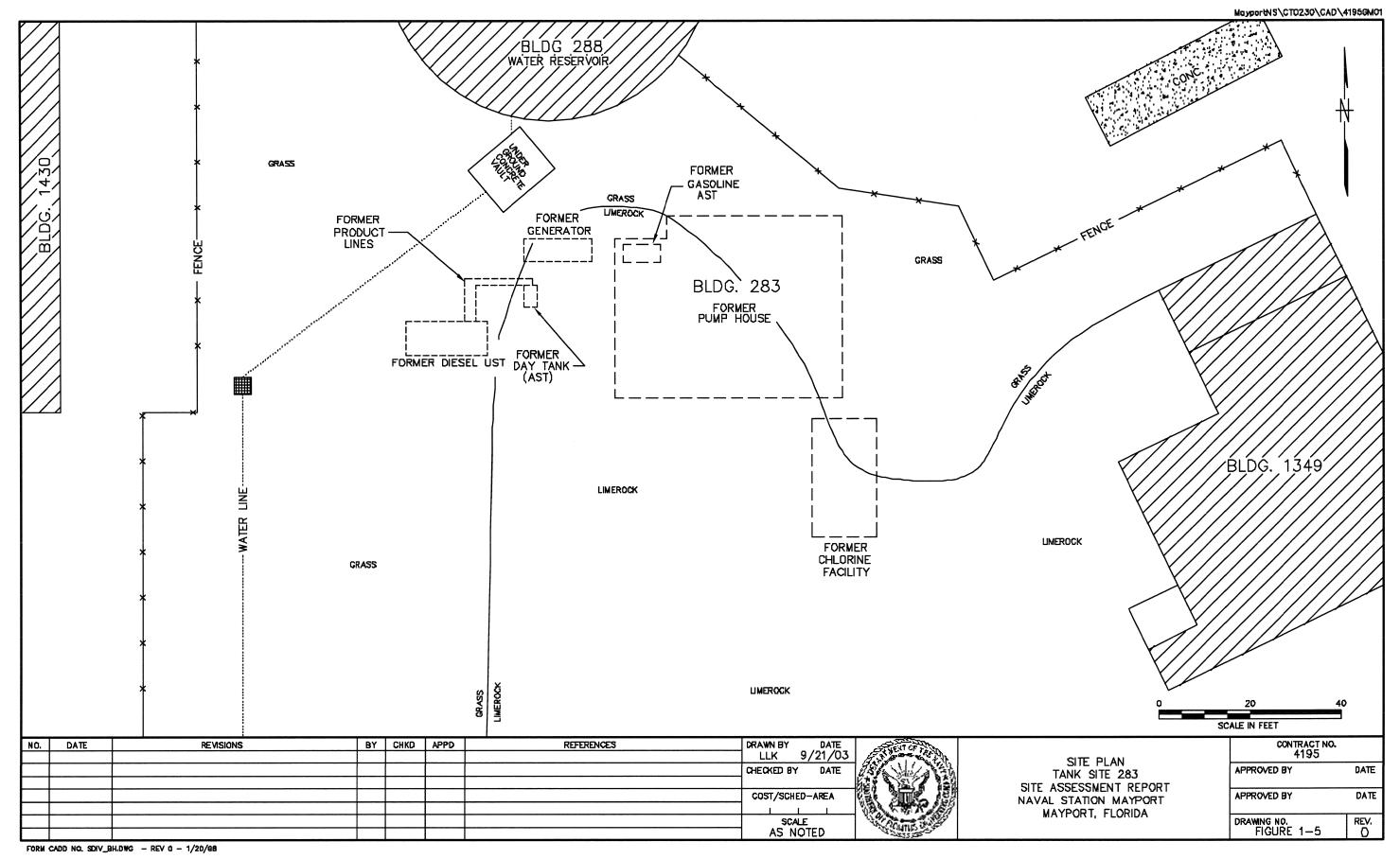
Well Identification	Distance from Site (miles)	Diameter (inches)	Depth of Well (ft bls)	Use
1	0.3 miles	12	1,000	In use
2	0.3 miles	16	1,000	In use
3	0.3 miles	16	1,000	In use

1.5 TOPOGRAPHY AND DRAINAGE

NAVSTA Mayport is located in the Southeastern Coastal Plain physiographic province. The topography is mostly low, gentle to flat, and composed of a series of ancient marine terraces. NAVSTA Mayport is located within the Silver Bluff Terrace. The average land surface elevation at NAVSTA Mayport is between 8 and 10 ft above mean sea level, a topographic map is provided as Figure 1-4 (USGS, 1992).


Tank Site 283 is located near the southern tip of the turning basin. Site surface drainage is to the south and east toward Massey Avenue, but drainage is generally sluggish and poorly defined due to low relief over the area.

1.6 LAND USE IN SITE VICINITY


The site is located in an industrial/commercial area of the Station. Buildings in the site vicinity are used for operations such as supply and maintenance in support of fleet activities. Vehicles and heavy equipment are common in the area.

1.7 SITE DESCRIPTION

The site is mostly unpaved. A large portion of the site consists of a lime rock parking area and grass covered areas as shown in Figure 1-5. Equipment and electrical power connector cords for the ships are stored in the gravel parking and grassy areas. Structures in the vicinity of the former tank site include a municipal water tank and maintenance facility garage. A chain link fence encircles the entire grounds. South and east of the municipal water tank is the former location of Building 283. The former UST and AST were located near the northwestern corner of this building. Building 283 was used to house the potable well pumps.

Rev. 1 12/15/03

04JAX0014 1-8 CTO 0230

1.8 SITE HISTORY AND OPERATIONS

The TCR (Hydro-Terra, 1993) for Site 283 documented removal of a 2000-gallon diesel UST and a 300-gallon AST day tank was conducted on December 23, 1992. Both tanks were single-walled and made of steel, and the dates of installation are unknown. The removal work was performed in accordance with the then current regulation in Chapter 17-761, FAC. The 2000-gallon diesel UST was connected via product lines to a 300-gallon AST, which acted as a day tank for the generator that supplied power to Building 283. Figure 1-5 shows the former locations of the two fuel systems, generator, pump house, and nearby buildings. A copy of the TCR is provided in Appendix B.

The TCR indicates that only the UST was visually inspected for evidence of corrosion. Although there was evidence of corrosion, no holes, cracks, or evidence of discharge were reported. During the tank removal, eight samples were collected from the excavated soils. The recorded soil vapor data indicated the presence of petroleum hydrocarbon vapors in five of the eight soil samples collected, ranging from 2 parts per million (ppm) to 25 ppm. The samples were collected from the sides and bottom of the open tank pit. Four of the five soil samples near the bottom of the pit indicated the presence of petroleum hydrocarbon vapors. Two of the samples recorded valued in excess of 50 ppm, but they were collected from below the water table, disallowing the data. Soil samples collected above the water table were contaminated below the 50 ppm designation for excessively contaminated soil per Chapter 62-770, FAC. No soil samples were collected for fixed-base laboratory analysis.

The water table was encountered at approximately 5 ft bls during the tank removal. One groundwater sample was collected from a temporary well presumably installed in the tank pit. Groundwater samples were analyzed for United States Environmental Protection Agency (USEPA) Method 602 [including methyl-tert-butyl ether (MTBE)] and USEPA Method 610 PAHs. No groundwater impacts were recorded. Following the tank removal, the excavated soil was placed back into the excavation. No groundwater samples were collected from the area of the diesel AST.

1.9 PURPOSE OF CURRENT INVESTIGATION

The objective of the most current field investigation was to determine if soil and/or groundwater have been adversely impacted by previous operations at the site. The data collected during the investigation was used to prepare this SAR as required by Chapter 62-770.600, FAC. This SAR provides a characterization of site conditions from which to base future courses of action. A SAR summary sheet is provided as Appendix A.

2.0 SUBSURFACE INVESTIGATION METHODS

2.1 QUALITY ASSURANCE

The site investigation was conducted in accordance with the Standard Operating Procedures prescribed by the FDEP Quality Assurance Section Document DER-001/92 and adopted by the TtNUS Comprehensive Quality Assurance Plan (CompQAP) Number 980038.

2.2 DETERMINATION OF GROUNDWATER FLOW DIRICTION

On July 9 and 10, 2002, TtNUS personnel installed four piezometers (PZ-01, PZ-02, PZ-03, and PZ-04) in a rectangular array at the subject site for the purpose of estimating groundwater flow direction. The top-of-casing elevations of the four piezometers were surveyed relative to a selected temporary benchmark (TBM) on site. The TBM was assigned an elevation of 25 ft. Depth-to-water was measured from the top-of-casing of the monitoring well and three piezometers using an electronic water level indicator. The relative water table elevation at each location was calculated by subtracting the depth-to-water measurement from the surveyed top-of-casing elevation, and a groundwater flow direction (pieziometric) map was generated from the water table elevation data.

2.3 SOIL QUALITY ASSESSMENT

2.3.1 Soil Borings

A total of 39 shallow soil borings (SB-01 through SB-39) and 1 deep boring (at the location of SB-01) were advanced around the area of the former day tank and UST that both contained diesel (see Figure 2-1). Shallow borings were advanced using a stainless steel, 3-inch, inside diameter (ID) hand-auger assembly, and the deep boring was advanced using a truck mounted DPT rig. Initially, 12 borings were installed on July 9 and 10, 2002. This initial soil survey located low level PAH impacts that resulted in additional work. Additional borings were completed on October 30, 2002; February 24, 2003; and June 15, 2003, for a total of 39 soil borings. The multiple sampling events were required due to a step-by-step process needed to estimate the extent of PAH impacts to shallow soils.

In completing this assessment, shallow borings were advanced by hand auger methods to an approximate depth of 3 ft and 5 ft bls. Boring SB-01 was advanced to a depth of 34 ft bls and was sampled to establish site lithology. The boring was advanced from land surface to 34 ft bls using a DPT push rod attached to a truck mounted GeoProbe. Four-ft long, stainless steel macrocore samplers lined with plastic sleeves were attached to the end of the DPT push rods and were used to extract soil samples. A TtNUS scientist

described the material encountered during advancement of the borings. A soil boring log for SB-01 is included in Appendix C.

Drill cuttings were containerized as investigation derived waste in 55-gallon drums prior to disposal offsite at a licensed disposal facility.

2.3.2 Field Screening Procedures


Soil samples collected from boring locations SB-1 through SB-16 and SB-34 through SB-39 were field screened at 1 ft, 3 ft, and in some cases 5 ft bls. Soil boring locations are shown on Figure 2-1. Soil samples were screened for organic vapors using an OVA-flame ionization detector (FID) and visually screened for petroleum staining. Soil borings SB-17 through SB-33 were only visually screened. Soil vapor analyses were performed in accordance with the headspace screening method described in Chapter 62-770.200(2), FAC.

2.3.3 Soil Sampling Strategy for Laboratory Analysis

2.3.3.1 Mobile Laboratory

During July 9 and 10, 2002, soil samples were collected for mobile laboratory analysis from SB-1 through SB-10. One soil sample from each boring was submitted to KB Labs, Inc., an on-site mobile laboratory, for analysis of benzene, toluene, ethylbenzene, and total xylenes (BTEX); MTBE; naphthalene; 1-methylnaphthalene; and 2-methylnaphthalene. Each sample was collected in a 4-ounce glass jar provided by the mobile laboratory. Mobile laboratory soil sample locations are shown on Figure 2-1. The sample selected for mobile laboratory analysis was a split of the sample exhibiting the highest organic vapor reading at each location or, in most cases, was collected immediately above the water table since field screening results did not indicate the presence of contamination.

Rev. 1 12/15/03

FORM CADD NO. SDIV_BHLDWG - REV D - 1/20/98

04JAX0014 CTO 0230

2.3.3.2 Fixed-Base Laboratory

On July 10, 2003, one soil sample location was selected for confirmatory analysis via a fixed-base laboratory. Only one confirmatory sample was collected since no contamination had been previously detected. This sample was submitted to the fixed-base laboratory for analysis of the GAG and KAG analytical group per Chapter 62-770, FAC. Soil sample SB-10 was selected from 3 ft bls for laboratory analysis since it recorded the highest site OVA reading of 8.4 ppm. Analytical results from the SB-10 soil sample indicated the presence of PAH contamination at levels exceeding FDEP SCTLs. PAHs were not included in the field screening methods due to cost and mobile laboratory limitations. As a result, additional mobilization became necessary to collect soil samples for PAH analysis via USEPA Method 8270 to estimate the extent of impact to soil at the site. Additional soil samples were collected from 3 ft bls on October 30, 2002; February 24, 2003; and June 15, 2003, from soil borings SB-13 though SB-39. Soil samples were also collected from 1 ft bls on June 15, 2003, for soil borings SB-28 and SB-34 through SB-39. These additional samples were collected to assess if the soil was impacted from a land surface release. Soil analytical results are discussed in Section 3.3.

Soil samples collected from SB-1 through SB-16 were analyzed at Accutest Laboratories located in Orlando, Florida, and soil samples collected from SB-17 through SB-39 were analyzed by ENCO Laboratories located in Jacksonville, Florida.

2.4 GROUNDWATER ASSESSMENT METHODS

2.4.1 Groundwater Sampling

2.4.1.1 DPT Grab Samples

During the mobile laboratory screening activities (July 9 and 10, 2002), groundwater samples were collected at soil borings SB-01 through SB-10 using DPT (i.e., Geoprobe) methodology. A total of 12 borings depicted on Figure 2-4 were completed during this period of time, although only 10 groundwater samples were screened by mobile laboratory. Soil borings SB-11 and SB-12 were not completed to the groundwater depth. One deep boring was completed at soil boring SB-01 to a depth of 34 ft bls where groundwater samples were collected from depths of 24 ft and 34 ft bls.

The groundwater samples were obtained using a detachable drive tip attached to a 48-inch, retractable stainless steel well screen encased in the lead drive casing. After the drill stem was advanced into the water-bearing zone, the casing was withdrawn 48 inches to allow influx of groundwater to the retractable screen. For groundwater sampling, Tygon[®] tubing was inserted into the probe and connected to a peristaltic pump. Several screen volumes were then pumped from the probe in order turbidity. After purging, groundwater samples were collected into 40-milliliter vials. The samples were immediately

delivered to the on-site mobile laboratory for analysis of BTEX, MTBE, naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene.

2.4.2 Monitoring Well Installation

On July 23, 2002, one permanent shallow monitoring well, MPT-283-MW-01 (MW-01), was installed by Groundwater Protection, Inc. under the supervision of TtNUS personnel. The well was installed at a location believed to have the greatest potential of contamination based on location (former tank location) and on screening information. The well location is the same location as SB-10 as shown on Figure 2-1.

2.4.2.1 Borehole Advancement

A posthole digger was used to excavate the borehole for MPT-283-MW-01 from ground surface to a depth of 5 ft bls to verify absence of subsurface utilities. From that point (5 ft bls) to total depth (13.5 ft bls), the borehole was advanced using 4¼-inch ID hollow stem augers (HSAs) attached to a truck-mounted drill rig. Soil cuttings were described during borehole advancement to further characterize site lithology. A soil boring log is included in Appendix C.

2.4.2.2 Well Construction and Development

The borehole for monitoring well MPT-283-MW-01 was advanced to a total depth of 13.5 ft bls. The well was constructed of 2-inch diameter, 0.010-inch mill slotted Schedule 40 polyvinyl chloride (PVC) screen (10-ft lengths), and solid risers (flush threaded) were inserted through the HSAs after attaining total depth. Graded 20/30 silica sand was poured between the PVC well and HSAs at the surface as the augers were being slowly removed from the borehole to create a filter pack in the annular space between borehole and monitoring well. The filter pack was poured into the annular space to a depth approximately 1.5 ft above the top of the screen (i.e., 1.5 ft bls) and was capped by 1 ft of 30/65 fine sand. The remaining annular space from the top of the fine sand seal to within 6 inches of ground surface was filled with Type I Portland cement grout. The well was completed at the surface with an 8-inch diameter steel manhole equipped with bolt down cover. Manholes were secured in place with concrete pads 2-ft square and 6 inches thick. A well completion log is provided in Appendix D.

After completion, MPT-283-MW-01 was developed using a submersible pump. Field measurements of pH, temperature, and specific conductance were recorded during development. The well was developed until field measurements became stable and water was virtually clear. Water quality stabilization was determined using the following criteria: temperature ±5 degrees Celsius, pH ±0.1 unit, and specific conductance ±10 micro ohms per centimeter. A monitoring well development record is provided in Appendix E (Field Data Sheets). All development water was containerized for disposal in 55-gallon steel drums. The water in the drums was sampled prior to disposal.

2.4.2.3 Permanent Monitoring Well Samples

On July 30, 2002, TtNUS personnel collected groundwater samples from MPT-283-MW-01. Prior to sampling, a minimum three well volumes of groundwater were removed from the well using the low flow quiescent purging method. During purging, field parameters pH, specific conductance, turbidity, dissolved oxygen, temperature, and oxidation/reduction potential were measured periodically using a Horiba U-22 instrument. A groundwater sampling log and low flow purge sheet compiled during purging and sampling of monitoring well MPT-283-MW-01 are provided in Appendix E.

Samples were collected in accordance with the procedures described in the FDEP-approved CompQAP in effect at the time of sampling. After collection, samples were immediately placed on ice and shipped under proper chain-of-custody protocol to Accutest Laboratories of Orlando for analysis of the GAG and KAG constituents, volatile organic compounds (VOCs) using USEPA Method 8021B, PAHs using USEPA Method 8310, ethylene dibromide (EDB) using USEPA Method 504.1, lead using USEPA Method 6010, and total recoverable petroleum hydrocarbons (TRPH) using Florida Petroleum Range Organics (FL-PRO). Sampling activities were documented in a site-specific field logbook.

3.0 RESULTS OF INVESTIGATION

3.1 SITE GEOLOGY AND HYDROGEOLOGY

3.1.1 <u>Lithology</u>

Lithology at the site includes a mottled fine to medium-grained sand that underlies the site. Intermixed with the sand is a varying percentage of shell hash to a depth of 34 ft bls. The depth of 34 ft was determined to be within the surficial aquifer and at a depth able to determine if vertical impacts were present. Due to the homogeneity of the subsurface and a limited number of deep borings, no lithologic cross-section was constructed. Soil boring logs are included as Appendix C.

3.1.2 <u>Groundwater Flow Direction</u>

Using the method discussed in Section 2.2, the direction of groundwater flow in the uppermost surficial aquifer underlying the site was calculated to be northerly. Groundwater elevation data obtained on July 9 and 10, 2002, are presented in Table 3-1 and a groundwater flow map (July 10, 2002) generated from this data is provided as Figure 3-1. Groundwater measurements take on July 9, 2002, are similar in direction to the findings of July 10, 2002. The measured depth to groundwater at the piezometers was approximately 3.5 to 5.0 ft below the top of casing.

3.1.3 Aquifer Classification and Characteristics

The State of Florida classifies the surficial aquifer underlying the site as G-II. Previous USGS aquifer test data at NAVSTA Mayport indicate that the average hydraulic conductivity of the surficial aquifer is approximately 4.34 ft per day (ft/day) (USGS, 1997).

The horizontal groundwater (hydraulic) gradient across the site was evaluated from water level data listed in Table 3-1 and shown on Figure 3-1. The horizontal hydraulic gradient beneath the site, calculated from pieziometric contours depicted on Figure 3-1, was calculated to be 0.0008 ft per ft (ft/ft).

Based on information provided by Driscoll (Driscoll, 1986) and on lithologic descriptions of material encountered during the current investigation, the effective porosity of surficial aquifer sediments was estimated to be 0.30.

Potential movement of groundwater at the site may be described in terms of transportation by natural flow using Darcy's Law.

Table 3-1 Groundwater Elevation Measurements

Site Assessment Report, Tank Site 283 Naval Station Mayport Mayport, Florida

Water Table Ele	vations - 1st Event	07/09/02				
Monitoring Screened Interval Depth (ft bls)		Top-of-Casing Elevation (ft)*	Depth to Water Below Top-of-Casing (ft)	Water Elevation (ft)		
Pz-1	3 to 8	25	4.83	20.17		
Pz-2	3 to 8	24.18	4.08	20.10		
Pz-3	3 to 8	23.55	3.36	20.19		
Pz-4			4.02	20.04		

Water Table Ele	vations - 2nd Event	07/10/02					
Monitoring Well Identification Screened Interval Depth (ft bls)		Top-of-Casing Elevation (ft)* Depth to Water Below Top-of-Casing (ft)		Water Elevation (ft)			
Pz-1	Pz-1 3 to 8		4.86	20.14			
Pz-2	3 to 8	24.18	4.11	20.07			
Pz-3	3 to 8	23.55	3.39	20.16			
Pz-4	3 to 8	24.06	4.05	20.01			

Notes:

Piezometers were installed on July 9, 2002, and were measured on July 9 and July 10, 2002.

*An arbitrary elevation of 25 ft was assigned to the top of casing at PZ-1.

Rev. 1 12/15/03

3-3

CTO 0230

FORM CADD NO. SDIV_BHLDWG - REV D - 1/20/98

04JAX0014

Darcy's Law may be expressed as follows:

$$V = \frac{(K \times I)}{n}$$

where:

V = average seepage velocity

K = hydraulic conductivity

n = effective porosity

I = average hydraulic gradient

Using a hydraulic conductivity of 4.34 ft/day, a hydraulic gradient of 0.0018 ft/ft, an inferred effective porosity value of 0.30, and Darcy's law, the groundwater seepage velocity across the site was calculated at 0.027 ft/day or 9.49 ft per year in a northern direction.

3.2 SOIL SCREENING RESULTS

Soil vapor screening methods and sampling locations for headspace analyses are discussed in Section 2.3.2. Results of the soil vapor survey are listed on Table 3-2 and the soil boring locations are depicted on Figure 2-1. The highest measurement for soil samples screened was SB-10 with an organic vapor reading of 8.4 ppm. This concentration is below the FDEP 50 ppm action level for excessively contaminated soil. Soils collected from soil samples SB-1 through SB-16 and SB 34 through SB-39 were screened visually and with an OVA-FID, while samples collected from SB-17 through 33 were only visually screened. No visual petroleum impacts were noted for all samples collected.

Two soil samples SB-08 and SB-10 collected from below the groundwater level did record levels greater that 10 ppm. These samples were collected from below the groundwater level and were determined to be false positives due to either moisture or methane.

3.3 SOIL SAMPLE ANALYTICAL RESULTS

3.3.1 Mobile Laboratory

Soil samples SB-1 through SB-10 were the only samples analyzed by a mobile laboratory. Mobile laboratory soil analytical results are summarized on Table 3-3. No constituents analyzed (BTEX, naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene) were reported above the instrument detection limits. It should be noted that PAH analyses were not conducted by the mobile laboratory due to cost limitations. The sample locations are presented on Figure 2-1. A complete report provided by KB Labs, Inc. is included in Appendix F.

Table 3-2 Soil Vapor Measurements

Soil Boring	Date of Measurement 7/9/2002	Sample Depth	Headspace Readings (ppm)				
Number		(ft bls)	Total Organic Reading	Carbon Filtered Reading	Net Reading		
SB-01		1	0	0			
		3	0	0	0		
		4.5	0	0	0		
SB-02	7/9/2002	1	0	0	0		
		3	0	0	0		
		5	0	0	0		
SB-03	7/9/2002	1	0	0	0		
		3	0	0	0		
		5	0	0	0		
SB-04	7/9/2002	1	0	0	0		
		3	0	0	0		
		4.5	0	0	0		
SB-05	7/9/2002	1	0	0	0		
		3	0	0	0		
		4.5	0	0	0		
SB-06	7/9/2002	1	0	0	0		
		3	0	0	0		
		4	0	0	0		
SB-07	7/9/2002	1	0	0	0		
		3	0	0	0		
		5	0	0	0		
SB-08	7/9/2002	1	0	0	0		
		3	0	0	0		
		5	10	0	10 *		
SB-09	7/9/2002	1	0	0	0		
		3	0	0	0		
		5	0	0	0		
SB-10	7/9/2002	1	0	0	0		
		3	8.4	0	8.4		
		5	568	106	462 *		
SB-11	7/10/2002	1	0	0	0		
		3	0	0	0		
		5	0	0.0	0		
SB-12	7/10/2002	1	0	0	0		
		3	0	0	0		
		5	0	0	0		
SB-13	10/3/2002	1	0	0	0		
		3	0	0	0		
SB-14	10/3/2002	1	0	0	0		
		3	0	0	0		

Table 3-2 (Continued) Soil Vapor Measurements

Site Assessment Report, Tank Site 283 Naval Station Mayport Mayport, Florida

Soil Boring	Date of	Comple Denth	Headspace Readings (ppm)				
Number	Measurement	Sample Depth (ft bls)	Total Organic Reading	Carbon Filtered Reading	Net Reading		
SB-15	10/3/2002	1	0	0	0		
		3	0	0	0		
SB-16	10/3/2002	1	0	0	0		
		3	0	0	0		
SB-34	5/15/2003	1	0	0	0		
		3	0	0	0		
SB-35	5/15/2003	1	0	0	0		
-		3	0	0	0		
SB-35	5/15/2003	1	0	0	0		
		3	0	0	0		
SB-37	5/15/2003	1	0	0	0		
		3	0	0	0		
SB-38	5/15/2003	1	0	0	0		
		3	0	0	0		
SB-39	5/15/2003	1	0	0	0		
		3	0	0	0		

Notes:

^{* =} soil sample collected in area affected by groundwater, no petroleum odor associated with sample. Wet soils encountered at depths ranging from approximately 3.5 to 4 ft bls.

CTO 0230

Table 3-3 Mobile Laboratory Soil Results

Site Assessment Report, Tank Site 283 Naval Station Mayport Mayport, Florida

	Direct Exposure	Leachability Based on	SB-01	SB-02	SB-03	SB-04	SB-05
Compound	Residential ¹	Groundwater Criteria ¹	3/5/2001	3/5/2001	3/5/2001	3/6/2001	3/5/2001
	nesidentiai	Sample Interval	3	3	3	3	3
VOCs (USEPA Method 8021B) (mg/kg)							
мтве	3200	0.2	0.200	0.200	0.200	0.200	0.200
Benzene	1.1	0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
Toluene	380	0.5	< 0.500	<0.500	<0.500	< 0.500	< 0.500
Ethylbenzene	1100	0.6	< 0.600	< 0.600	< 0.600	< 0.600	< 0.600
Total Xylenes	5900	0.2	<0.200	<0.200	<0.200	<0.200	<0.200
Napthalene	40	1.7	<1.7	<1.7	<1.7	<1.7	<1.7
1,Methylnapthalene	68	2.2	<2.2	<2.2	<2.2	<2.2	<2.2
2,Methylnapthalene	80	6.1	<6.1	<6.1	<6.1	<6.1	<6.1

	Direct Exposure	Leachability Based on	SB-06	SB-07	SB-08	SB-09	SB-10
Compound	Residential ¹	Groundwater Criteria ¹	3/5/2001	3/5/2001	3/5/2001	3/5/2001	3/5/2001
	nesideriliai	Sample Interval	2.5	3	3	3	3
VOCs (USEPA Method 80	21B) (mg/kg)					***************************************	
MTBE	3200	0.2	<.200	<.200	<.200	<.200	<.200
Benzene	1.1	0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
Toluene	380	0.5	<0.500	< 0.500	<0.500	< 0.500	< 0.500
Ethylbenzene	1100	0.6	< 0.600	< 0.600	<0.600	< 0.600	< 0.600
Total Xylenes	5900	0.2	<0.200	<0.200	<0.200	<0.200	< 0.200
Napthalene	40	1.7	<1.7	<1.7	<1.7	<1.7	<1.7
1,Methylnapthalene	68	2.2	<2.2	<2.2	<2.2	<2.2	<2.2
2,Methylnapthalene	80	6.1	<6.1	<6.1	<6.1	<6.1	<6.1

Notes:

¹Chapter 62-770, FAC (April 30, 1999) μg/kg = micrograms per kilogram

3.3.2 <u>Fixed-Base Laboratory</u>

On July 10, 2002, one soil sample was collected at 3 ft bls from soil boring SB-10, the soil boring with the greatest OVA measurement. This sample was obtained for fixed-base laboratory analysis of petroleum GAG/KAG parameters to comply with Chapter 62-770, FAC. These parameters include PAHs using USEPA Method 8270, VOCs using USEPA Method 8260B (purgeable aromatics and purgeable halocarbons), lead using USEPA Method 6010, EDB using USEPA Method 504.1, and TRPH using Method FL-PRO. Based on the analytical results, constituents that exceeded SCTLs were only present in the PAH analysis that recorded excessive values of benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene. Given these findings, additional soil samples (SB-13 through SB-39) were collected for analysis of PAH constituents on October 30, 2002; February 24, 2003; and June 15, 2003. The results from the additional soil samples identified the same constituents or less numbers of the same contaminants identified in the soil boring SB-10. No additional SCTLs were exceeded. Soil sample results in excess of leachability, residential, and commercial SCTLs for SB-10 through SB-39 are provided in Table 3-4.

Soil sample locations that exceeded the residential direct exposure SCTL limit include sample locations SB-10, SB-13, SB-14, SB-16 through SB-29, SB-31, and SB-39. Figure 3-2 depicts the sample location and concentration of residential SCTL exceedences. Based on residential SCTL results, the impacts are not fully defined using this action level, and impacts extend to the eastern fence line of the site.

Commercial or industrial SCTLs exceedences included 11 soil sample locations (SB-10, SB-13, SB-14, SB-16, SB-19, SB-22, SB24 through SB-28, and SB-31). Figure 3-3 documents the area of commercial or industrial SCTL exceedences, which is approximately 60 ft by 40 ft and extends to just above the water table. The water table is approximately 3.5 ft bls in this area. The area of soil impacts beyond the commercial or industrial exceedences level is estimated to be about 311 cubic yards of soil.

The SCTL of soil leachability for groundwater criteria was exceeded at 3 soil sample locations (SB-10, SB-13, and SB-28. Figure 3-4 depicts the sample ID, location, and analytical result for SCTL leachability. This area of leachability impact is approximately 15 ft by 15 ft and is included within the residential and commercial or industrial SCTL exceedences areas. Soil boring SB-10 is the location of monitoring well MPT-283-MW-01, which is located down gradient of SB-28 and SB-13. The area of soil impacts greater than the leachability exceedences is about 30 cubic yards.

The sample location with the greatest PAH constituent concentration of benzo(a)anthracene [6.0 milligrams per kilogram (mg/kg)], benzo(a)pyrene (8.7 mg/kg), benzo(b)fluoranthene (9.8 mg/kg), dibenzo(a,h)anthracene (3.0 mg/kg), and indeno(1,2,3-cd)pyrene (6.0 mg/kg) all were collected at soil sample SB-28. A complete laboratory report is provided as Appendix G.

Table 3-4 Summary of Fixed-Base Laboratory Soil Sample Resutls

Compound	Direct Exposure Residential ¹ (mg/kg)	Commercial / Industrial (mg/kg)	Leachability Based Criteria ¹ (mg/kg) Sample Date	SB-10 07/10/02	SB-13 10/03/02	SB-14 10/03/02	SB-15 10/03/02	SB-16 10/03/02	SB-17 02/24/03	SB-18 02/24/03
VOCs (USEPA Method 8021B) (mg/kg)			3 ft	3 ft	3 ft	3 ft	3 ft	3 ft	3 ft	
Benzene	1.1	1.6	0.007	<0.0058	NA	NA	NA	NA	NA	NA
Toluene	380	2600	0.5	<0.0058	NA	NA	NA	NA	NA	NA
Ethylbenzene	1100	8400	0.6	<0.0058	NA	NA	NA	NA	NA	NA
Total Xylenes	5900	40000	0.2	< 0.017	NA	NA	NA	NA	NA	NA
MTBE	3200	22000	0.2	<0.0058	NA	NA	NA	NA	NA	NA
PAHs (USEPA Method 83	310) (mg/kg)									
Naphthalene	40	270	1.7	<1.9	<2	< 0.42	< 0.4	<2.1	< 0.0037	0.011
2-methylnaphthalene	80	560	6.1	<1.9	<2	< 0.42	<0.4	<2.1	< 0.0037	0.01
1-methylnaphthalene	68	470	2.2	<1.9	<2	< 0.42	< 0.4	<2.1	< 0.0037	0.0077
Acenaphthylene	1100	11000	27	<3.8	<2	<0.84	<0.81	<4.2	< 0.0037	<0.0037
Acenaphthene	1900	18000	2.1	<3.8	<2	<0.84	<0.81	<4.2	< 0.0037	0.034
Anthracene	18000	260000	2500	1.74	<2	0.285	<0.4	<2.1	< 0.0037	0.051
Flourene	2200	28000	160	<1.9	<2	0.304	<0.4	<2.1	<0.0037	0.032
Benzo (a) anthracene	1.4	5	3.2	3.49	3.99	0.918	<0.4	3.01	0.0037	0.11
Benzo (a) pyrene	0.1	0.5	8	3.37	2.34	0.626	<0.081	1.78	0.006	0.17
Benzo (b) flouranthene	1.4	4.8	10	2.39	1.63	0.427	<0.081	1.22	0.0063	0.2
Benzo (g,h,i) perylene	2300	41000	32000	2.07	1.96	0.576	<0.081	1.32	0.001	0.19
Benzo(k)fluoranthene	15	52	25	1.67	1.36	0.354	<0.081	1.01	0.004	0.11
Chrysene	140	450	77	4.17	3.32	0.898	<0.4	2.73	0.004	0.14
Dibenzo (a,h) anthracene	0.1	0.5	30	0.854	0.408	0.111	<0.081	0.331	< 0.0037	0.087
Fluoranthene	2900	48000	1200	13.2	9.8	2.37	<0.4	7.58	0.011	0.47
Indeno (1,2,3-cd) pyrene	1.5	5.3	28	1.88	1.7	0.454	<0.081	1.21	<0.0037	0.18
Phenanthrene	2000	30000	250	11.5	8.36	1.87	< 0.4	6.95	0.0071	0.34
Pyrene	2200	37000	880	8.31	5.67	1.54	<0.4	4.7	0.0085	0.33
FL-PRO (USEPA Method	8270) (mg/kg)									
TRPH	340	2500	340	56.9	NA	NA	NA	NA	NA	NA
See notes at end of table.										

Table 3-4 (Continued) Summary of Fixed-Base Laboratory Soil Sample Resutls

Compound	Direct Exposure Residential ¹ (mg/kg)	Commercial / Industrial (mg/kg)	Leachability Based Criteria ¹ (mg/kg) Sample Date	SB-19 02/24/03	SB-20 02/24/03	SB-21 02/24/03	SB-22 02/24/03	SB-23 02/24/03	SB-24 02/24/03	SB-25 02/24/03
VOCs (USEPA Method 8021B) (mg/kg)			3 ft	3 ft	3 ft	3 ft	3 ft	3 ft	3 ft	
Benzene	1.1	1.6	0.007	NA						
Toluene	380	2600	0.5	NA						
Ethylbenzene	1100	8400	0.6	NA						
Total Xylenes	5900	40000	0.2	NA						
MTBE	3200	22000	0.2	NA						
PAHs (USEPA Method 83	310) (mg/kg)									
Naphthalene	40	270	1.7	0.2	<0.018	0.02	0.18	<0.0038	0.096	0.086
2-methylnaphthalene	80	560	6.1	0.19	<0.018	0.02	0.14	<0.0038	0.096	0.071
1-methylnaphthalene	68	470	2.2	0.14	<0.018	<0.018	0.088	<0.0038	0.080	< 0.071
Acenaphthylene	1100	11000	27	< 0.073	<0.018	<0.018	< 0.072	<0.0038	< 0.073	< 0.071
Acenaphthene	1900	18000	2.1	0.84	0.048	0.089	0.59	0.012	0.44	0.39
Anthracene	18000	260000	2500	1.4	0.096	0.17	0.77	0.019	0.82	0.86
Flourene	2200	28000	160	0.84	0.048	0.094	0.66	0.01	0.40	0.43
Benzo (a) anthracene	1.4	5	3.2	2.4	0.19	0.23	1.4	0.049	1.30	1.00
Benzo (a) pyrene	0.1	0.5	8	3.6	0.32	0.33	1.9	0.076	2.00	1.40
Benzo (b) flouranthene	1.4	4.8	10	3.8	0.4	0.36	2.6	0.095	2.70	1.70
Benzo (g,h,i) perylene	2300	41000	32000	2.7	0.3	0.3	1.6	0.091	1.70	1.30
Benzo(k)fluoranthene	15	52	25	2.7	0.26	0.33	1.4	0.06	1.80	1.00
Chrysene	140	450	77	3.1	0.27	0.31	1.8	0.064	1.80	1.20
Dibenzo (a,h) anthracene	0.1	0.5	30	1.3	0.12	0.13	0.72	0.037	0.73	0.45
Fluoranthene	2900	48000	1200	9.1	0.79	0.94	5.9	0.16	5.10	3.90
Indeno (1,2,3-cd) pyrene	1.5	5.3	28	<u>2.4</u>	0.27	0.28	1.4	0.079	1.60	1.10
Phenanthrene	2000	30000	250	8.0	0.62	0.83	5.9	0.11	4.20	3.60
Pyrene	2200	37000	880	6.4	0.54	0.67	4.0	0.12	3.60	2.60
FL-PRO (USEPA Method	8270) (mg/kg)									
TRPH	340	2500	340	NA						
See notes at end of table.										

Table 3-4 (Continued) Summary of Fixed-Base Laboratory Soil Sample Resutls

Compound	Direct Exposure Residential ¹ (mg/kg)	Commercial / Industrial (mg/kg)	Criteria ¹ (mg/kg) Sample Date	SB-26 02/24/03	SB-27 02/24/03	SB-28 05/18/03	SB-28 02/24/03	SB-29 02/24/03	SB-30	SB-31
VOCs (USEPA Method 8021B) (mg/kg)		93	3 ft	3 ft	1 ft	3 ft	3 ft	3 ft	3 ft	
Benzene	1.1	1.6	0.007	NA	NA	NA	NA	NA	NA	NA
Toluene	380	2600	0.5	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	1100	8400	0.6	NA	NA	NA	NA	NA	NA	NA
Total Xylenes	5900	40000	0.2	NA	NA	NA	NA	NA	NA	NA
MTBE	3200	22000	0.2	NA	NA	NA	NA	NA	NA	NA
PAHs (USEPA Method 8	310) (mg/kg)									
Naphthalene	40	270	1.7	< 0.036	< 0.036	< 0.0034	0.82	<0.018	<0.0038	0.26
2-methylnaphthalene	80	560	6.1	< 0.036	< 0.036	< 0.0034	0.76	<0.018	<0.0038	0.24
1-methylnaphthalene	68	470	2.2	< 0.036	< 0.036	< 0.0034	0.50	<0.018	<0.0038	<0.18
Acenaphthylene	1100	11000	27	< 0.036	< 0.036	< 0.0034	<0.18	<0.018	<0.0038	<0.18
Acenaphthene	1900	18000	2.1	0.14	0.14	0.0076	2.60	0.09	0.01	1.00
Anthracene	18000	260000	2500	0.32	0.31	0.018	4.30	0.17	0.02	2.00
Flourene	2200	28000	160	0.14	0.15	0.0072	2.80	0.09	0.01	1.00
Benzo (a) anthracene	1.4	5	3.2	0.48	0.47	0.07	6.00	0.23	0.04	2.90
Benzo (a) pyrene	0.1	0.5	8	0.67	0.68	0.067	8.70	0.32	0.06	3.80
Benzo (b) flouranthene	1.4	4.8	10	0.82	0.98	0.079	9.80	0.40	0.08	4.90
Benzo (g,h,i) perylene	2300	41000	32000	0.66	0.59	0.041	6.00	0.30	0.06	3.40
Benzo(k)fluoranthene	15	52	25	0.62	0.40	0.048	5.40	2.30	0.05	3.60
Chrysene	140	450	77	0.59	0.58	0.067	7.10	2.80	0.05	3.30
Dibenzo (a,h) anthracene	0.1	0.5	30	0.25	0.22	<0.0034	3.00	0.06	0.02	1.40
Fluoranthene	2900	48000	1200	1.70	1.60	0.140	25.00	0.80	0.15	10.00
Indeno (1,2,3-cd) pyrene	1.5	5.3	28	0.58	0.53	0.038	6.00	0.27	0.01	3.10
Phenanthrene	2000	30000	250	1.30	1.30	0.079	22.00	0.69	0.12	8.90
Pyrene	2200	37000	880	1.20	1.10	0.100	17.00	0.53	0.10	7.20
FL-PRO (USEPA Method	l 8270) (mg/kg)									
TRPH	340	2500	340	NA	NA		NA	NA	NA	NA

Table 3-4 (Continued) Summary of Fixed-Base Laboratory Soil Sample Resutls

Site Assessment Report, Tank Site 283 Naval Station Mayport Mayport, Florida

Compound	Residential Industrial (mg/kg) (mg/kg)		SB-32 02/24/03	SB-33	SB-34	SB-34 05/15/03	SB-35	SB-35 05/15/03	SB-36	
VOCs (USEPA Method 8	021B) (ma/ka)	N. S. C.		3 ft	3 ft	1 ft	3 ft	1 ft	3 ft	1 ft
Benzene	1.1	1.6	0.007	NA	NA	NA	NA	NA	NA	NA
Toluene	380	2600	0.5	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	1100	8400	0.6	NA	NA	NA	NA	NA	NA	NA
Total Xylenes	5900	40000	0.2	NA	NA	NA	NA	NA	NA	NA
MTBE	3200	22000	0.2	NA	NA	NA	NA	NA	NA	NA
PAHs (USEPA Method 8	310) (mg/kg)									
Naphthalene	40	270	1.7	< 0.0036	< 0.0039	<0.0035	<0.0038	< 0.0035	< 0.0039	< 0.0034
2-methylnaphthalene	80	560	6.1	< 0.0036	< 0.0039	< 0.0035	<0.0038	<0.0035	< 0.0039	< 0.0034
1-methylnaphthalene	68	470	2.2	< 0.0036	< 0.0039	<0.0035	<0.0038	< 0.0035	< 0.0039	< 0.0034
Acenaphthylene	1100	11000	27	< 0.0036	< 0.0039	< 0.0035	<0.0038	< 0.0035	< 0.0039	< 0.0034
Acenaphthene	1900	18000	2.1	0.0072	< 0.0039	<0.0035	<0.0038	<0.0035	<0.0039	<0.0034
Anthracene	18000	260000	2500	0.013	< 0.0039	<0.0035	<0.0038	0.005	0.005	<0.0034
Flourene	2200	28000	160	0.0068	<0.0039	<0.0035	<0.0038	0.005	< 0.039	<0.0034
Benzo (a) anthracene	1.4	5	3.2	0.038	<0.0039	<0.0035	<0.0038	0.015	0.0093	< 0.0034
Benzo (a) pyrene	0.1	0.5	8	0.061	<0.0039	0.0077	<0.0038	0.026	0.016	0.0082
Benzo (b) flouranthene	1.4	4.8	10	0.078	<0.0039	<0.0035	<0.0038	0.032	0.016	0.005
Benzo (g,h,i) perylene	2300	41000	32000	0.066	<0.0039	<0.0035	<0.0038	0.028	0.018	0.001
Benzo(k)fluoranthene	15	52	25	0.063	<0.0039	<0.0035	<0.0038	0.017	0.0093	< 0.0034
Chrysene	140	450	77	0.05	<0.0039	<0.0035	<0.0038	0.017	0.0096	< 0.0034
Dibenzo (a,h) anthracene	0.1	0.5	30	0.027	<0.0039	<0.0035	<0.0038	<0.0035	<0.0039	< 0.0034
Fluoranthene	2900	48000	1200	0.13	<0.0039	0.0038	0.0041	0.027	0.019	0.0058
Indeno (1,2,3-cd) pyrene	1.5	5.3	28	0.059	<0.0039	<0.0035	<0.0038	0.026	0.016	0.0085
Phenanthrene	2000	30000	250	0.087	<0.0039	<0.0035	<0.0038	0.014	0.0089	< 0.0034
Pyrene	2200	37000	880	0.098	<0.0039	0.0035	<0.0038	0.020	0.014	0.0048
FL-PRO (USEPA Method	8270) (mg/kg)									
TRPH	340	2500	340	NA	NA	NA	NA	NA	NA	NA

Table 3-4 (Continued) Summary of Fixed-Base Laboratory Soil Sample Resutls

Site Assessment Report, Tank Site 283 Naval Station Mayport Mayport, Florida

Compound	Residential Industrial (mg/kg) (mg/kg)		SB-36	SB-37 05/15/03	SB-37	SB-38 05/15/03	SB-38	SB-39 05/15/03	SB-39	
VOCs (USEPA Method 8	021B) (ma/ka)		33	3 ft	1 ft	3 ft	1 ft	3 ft	1 ft	3 ft
Benzene	1,1	1.6	0.007	NA	NA	NA	NA	NA	NA	NA
Toluene	380 2600 0.5 NA NA		NA	NA	NA	NA	NA			
Ethylbenzene	1100	8400	0.6	NA	NA	NA	NA	NA	NA	NA
Total Xylenes	5900	40000	0.2	NA	NA	NA	NA	NA	NA	NA
MTBE	3200	22000	0.2	NA	NA	NA	NA	NA	NA	NA
PAHs (USEPA Method 8	310) (mg/kg)									
Naphthalene	40	270	1.7	< 0.0035	< 0.0034	<0.0036	< 0.0034	<0.0039	0.005	<0.0038
2-methylnaphthalene	80	560	6.1	< 0.0035	< 0.0034	< 0.0036	< 0.0034	< 0.0039	0.005	<0.0038
1-methylnaphthalene	68	470	2.2	< 0.0035	< 0.0034	< 0.0036	< 0.0034	< 0.0039	0.0037	<0.0038
Acenaphthylene	1100	11000	27	< 0.0035	0.0037	0.0036	< 0.0034	< 0.0039	0.004	0.0042
Acenaphthene	1900	18000	2.1	<0.0035	< 0.0034	< 0.0036	< 0.0034	< 0.0039	0.0017	0.0014
Anthracene	18000	260000	2500	< 0.0035	0.0067	0.0062	< 0.0034	< 0.0039	0.026	0.03
Flourene	2200	28000	160	< 0.0035	< 0.0034	< 0.0036	< 0.0034	< 0.0039	0.012	0.015
Benzo (a) anthracene	1.4	5	3.2	< 0.0035	0.021	0.015	< 0.0034	< 0.0039	0.099	0.085
Benzo (a) pyrene	0.1	0.5	8	< 0.0035	0.034	0.025	< 0.0034	< 0.0039	0.12	0.11
Benzo (b) flouranthene	1.4	4.8	10	< 0.0035	0.045	0.031	< 0.0034	< 0.0039	0.2	0.14
Benzo (g,h,i) perylene	2300	41000	32000	< 0.0035	0.038	0.025	< 0.0034	< 0.0039	0.11	0.096
Benzo(k)fluoranthene	15	52	25	<0.0035	0.026	0.021	< 0.0034	< 0.0039	0.078	0.088
Chrysene	140	450	77	< 0.0035	0.023	0.018	< 0.0034	< 0.0039	0.11	0.098
Dibenzo (a,h) anthracene	0.1	0.5	30	< 0.0035	< 0.0034	< 0.0036	< 0.0034	< 0.0039	< 0.0034	<0.0038
Fluoranthene	2900	48000	1200	<0.0035	0.039	0.032	0.0034	<0.0039	0.22	0.21
Indeno (1,2,3-cd) pyrene	1.5	5.3	28	<0.0035	0.036	0.024	< 0.0034	<0.0039	0.11	0.088
Phenanthrene	2000	30000	250	< 0.0035	0.017	0.015	< 0.0034	<0.0039	0.18	0.17
Pyrene	2200	37000	880	<0.0035	0.030	0.024	< 0.0034	< 0.0039	0.16	0.14
FL-PRO (USEPA Method	l 8270) (mg/kg)									
TRPH	340	2500	340	NA	NA	NA	NA	NA	NA	NA

CTO 0230

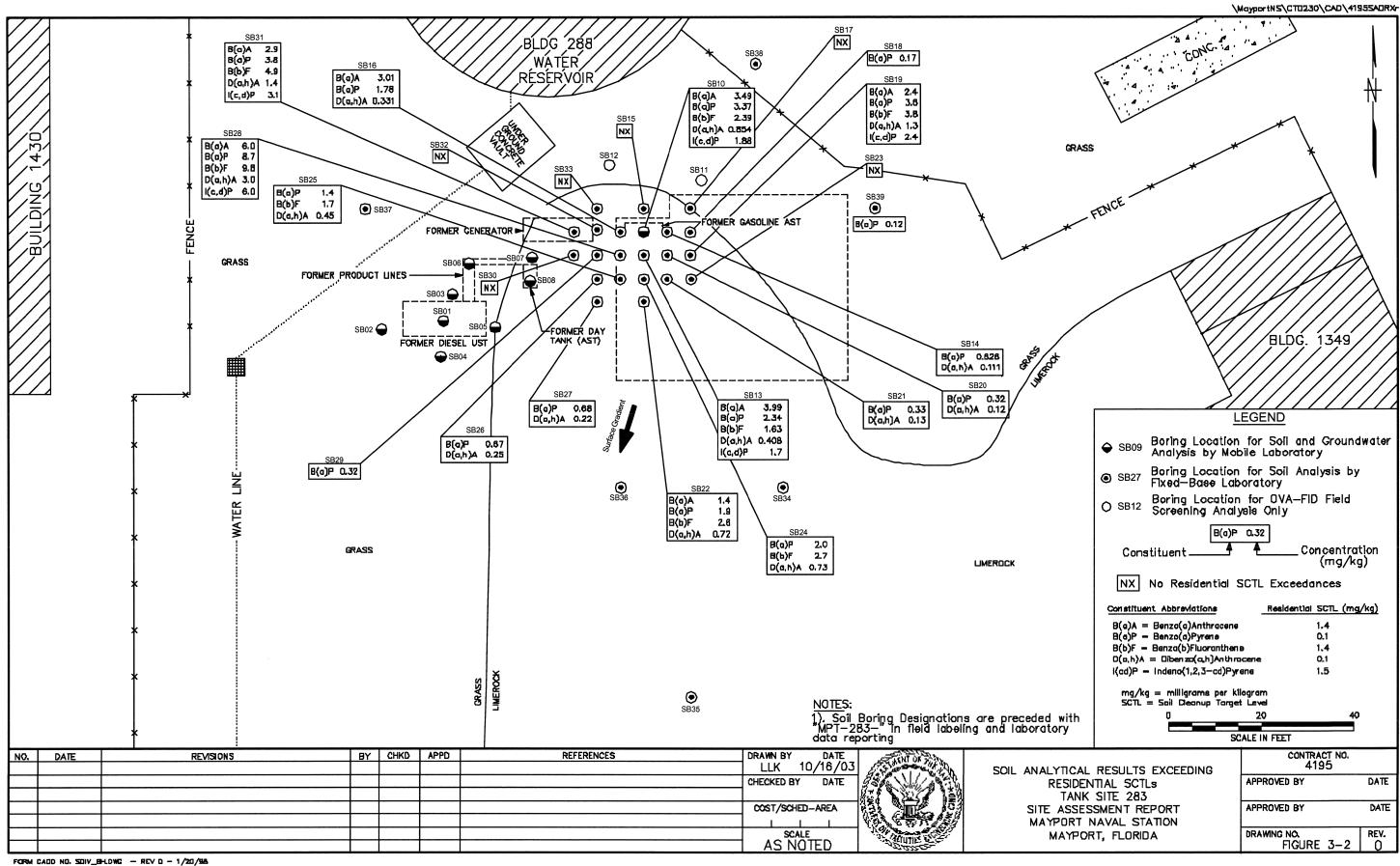
Table 3-4 (Continued) Summary of Fixed-Base Laboratory Soil Sample Resutls

Site Assessment Report, Tank Site 283 Naval Station Mayport Mayport, Florida

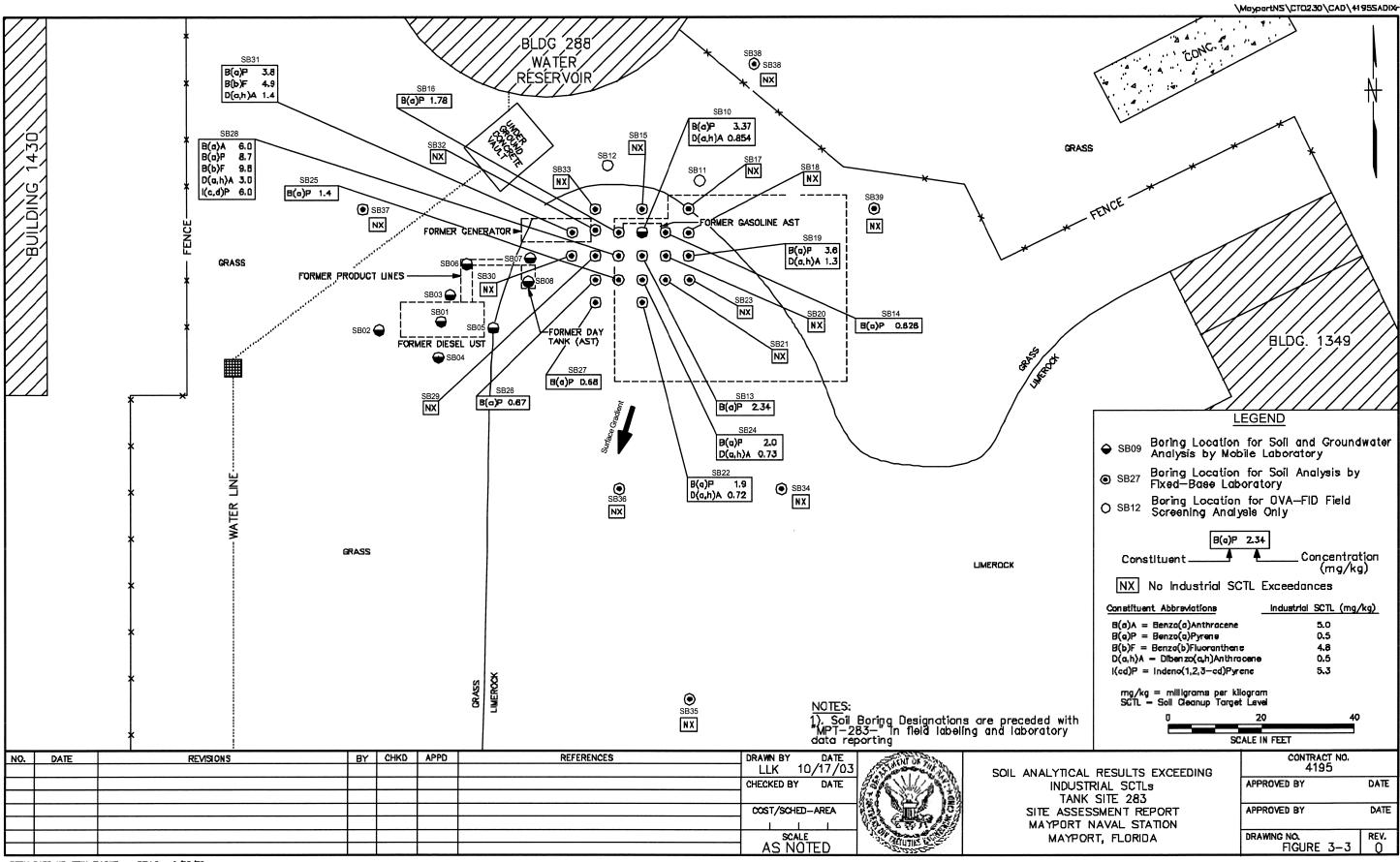
Notes:

¹Chapter 62-770, FAC (April 30, 1999)

The quality control for this data has only been checked by the laboratory.

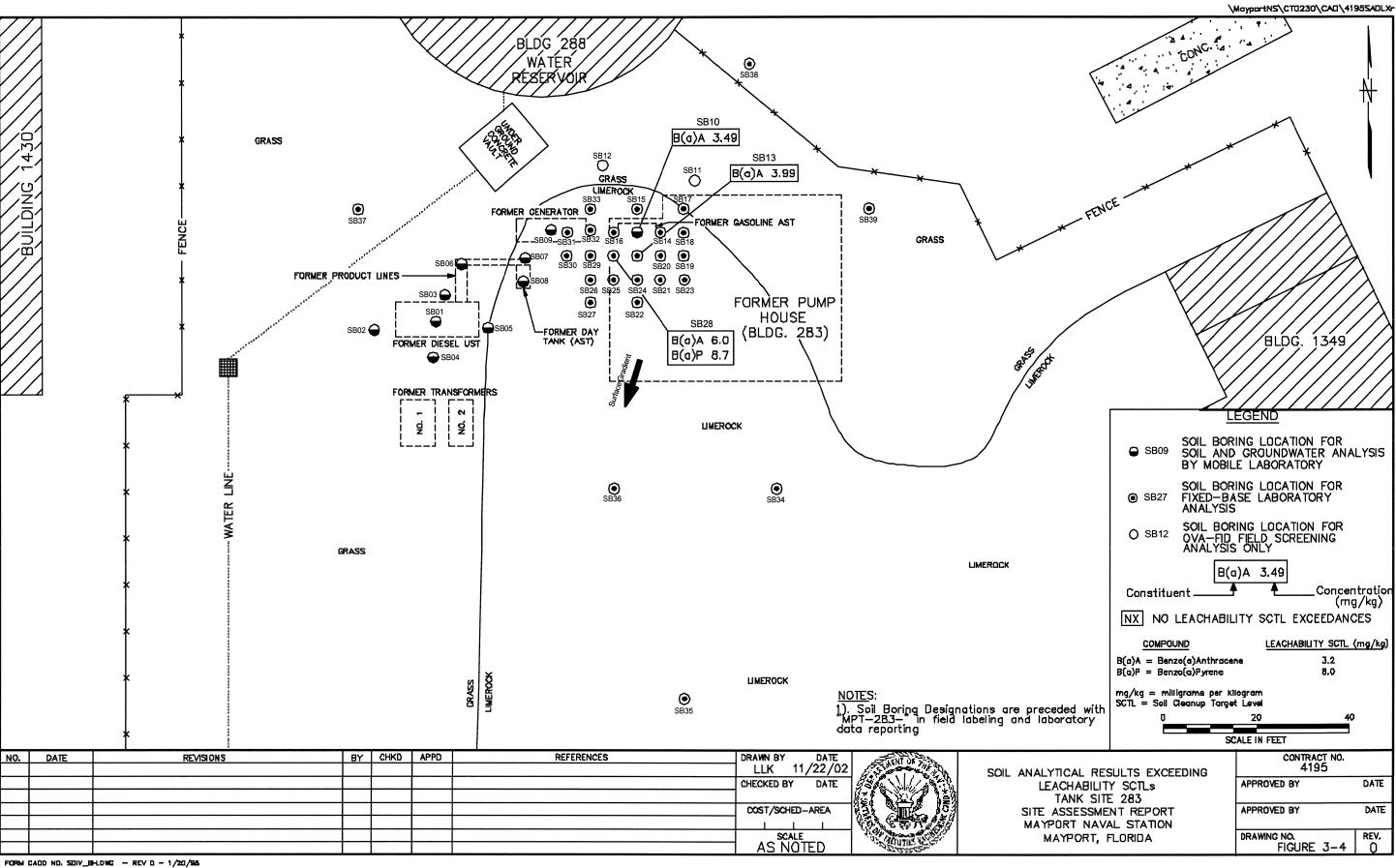

NA = not analyzed

Shaded = Exceeds residential and leachability SCTLs


bold = Exceedes industrail/commercial SCTLs

All samples collected from 1ft or 3 ft bls

mg/kg = milligrams per kilogram



- REV 0 - 1/20/2

FORM CADD NO. SDIV_BH.DWG - REV D - 1/20/98

Rev. 1 12/15/03

- KEV 0 - 1/20/2

04JAX0014

3.4 GROUNDWATER ANALYTICAL RESULTS

3.4.1 <u>Mobile Laboratory</u>

During the mobile laboratory screening activities (July 9 and 10, 2002), groundwater samples were collected at soil borings SB-01 through SB-10 using DPT (i.e., Geoprobe) methodology. A total of 12 borings depicted on Figure 2-4 were completed during this period of time, although only 10 boring locations were screened by the mobile laboratory. Soil borings SB-11 and SB-12 were not completed to the groundwater depth. In addition to a shallow groundwater sample being collected from SB-1, two deep groundwater samples collected at 24 ft and 34 ft bls was also collected for analysis.

All samples were analyzed by an on-site mobile laboratory and the results are summarized on Table 3-5. The locations of the samples are depicted on Figure 2-1. No constituents analyzed (BETX, naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene) were reported above the instrument detection limits. A complete report provided by KB Labs, Inc. is included in Appendix F.

3.4.2 <u>Fixed-Base Laboratory</u>

On July 30, 2002, groundwater from monitoring well MPT-283-MW-01 (formerly SB-10) was sampled. The groundwater sample was analyzed for the following GAG/KAG constituents: Pb using USEPA Method 6010, EDB using USEPA Method 504.1, PAHs using USEPA Method 8270, VOCs using USEPA Method 8260B, and petroleum range organics using FL-PRO. Based on the results, no exceedences of groundwater cleanup target levels and no petroleum constituents were reported. A summary of groundwater analytical results is presented in Table 3-6. Groundwater laboratory analytical results are provided as Appendix G.

Table 3-5 Mobile Laboratory Groundwater Results

Site Assessment Report, Tank Site 283 Naval Station Mayport Mayport, Florida

Compound	FDEP Target Level ¹	SB-01	SB-02	SB-03	SB-04	SB-05	SB-06	SB-07			
		07/09/02	07/09/02	07/09/02	07/09/02	07/09/02	07/09/02	07/09/02			
	Sample Interval (ft)	4'-6'	4'-6'	4'-6'	4'-6'	4'-6'	4'-6'	4'-6'			
VOCs (USEPA Method 8	8021B) (μg/L)										
MTBE	50	<50	<50	<50	<50	<50	<50	<50			
Benzene	1	<1	<1	<1	<1	<1	<1	<1			
Toluene	40	<40	<40	<40	<40	<40	<40	<40			
Ethylbenzene	30	<30	<30	<30	<30	<30	<30	<30			
Total Xylenes	20	<20	<20	<20	<20	<20	<20	<20			
Napthalene	20	<20	<20	<20	<20	<20	<20	<20			
1,Methylnapthalene	20	<20 <20 <20 <20 <20						<20			
2,Methylnapthalene	20	<20	<20	<20	<20	<20	20 <20 <20				
Compound	FDEP Target Level ¹	SB-08	SB-09	SB-10	SB-11	SB-12	SB-01	SB-01			
Compound	FDEP Target Level ¹	SB-08 07/09/02	SB-09 07/09/02	SB-10 07/09/02	SB-11 07/10/02	SB-12 07/10/02	SB-01 07/10/02	SB-01 07/10/02			
Compound	FDEP Target Level ¹ Sample Interval (ft)										
_	Sample Interval (ft)	07/09/02	07/09/02	07/09/02	07/10/02	07/10/02	07/10/02	07/10/02			
Compound VOCs (USEPA Method & MTBE	Sample Interval (ft)	07/09/02	07/09/02	07/09/02	07/10/02	07/10/02	07/10/02	07/10/02			
VOCs (USEPA Method 8	Sample Interval (ft)	07/09/02 4'-6'	07/09/02 4'-6'	07/09/02 3'-5'	07/10/02 4'-6'	07/10/02 4'-6'	07/10/02 20'-24'	07/10/02 30'-34'			
VOCs (USEPA Method & MTBE	Sample Interval (ft) 8021B) (µg/L) 50	07/09/02 4'-6' <50	07/09/02 4'-6' <50	07/09/02 3'-5' <50	07/10/02 4'-6' <50	07/10/02 4'-6' <50	07/10/02 20'-24' <50	07/10/02 30'-34' <50			
VOCs (USEPA Method & MTBE Benzene	Sample Interval (ft) 8021B) (μg/L) 50 1	07/09/02 4'-6' <50 <1	07/09/02 4'-6' <50 <1	07/09/02 3'-5' <50 <1	07/10/02 4'-6' <50 <1	07/10/02 4'-6' <50 <1	07/10/02 20'-24' <50 <1	07/10/02 30'-34' <50 <1			
VOCs (USEPA Method & MTBE Benzene Toluene	Sample Interval (ft) 8021B) (μg/L) 50 1 40	07/09/02 4'-6' <50 <1 <40	07/09/02 4'-6' <50 <1 <40	07/09/02 3'-5' <50 <1 <40	07/10/02 4'-6' <50 <1 <40	07/10/02 4'-6' <50 <1 <40	07/10/02 20'-24' <50 <1 <40	07/10/02 30'-34' <50 <1 <40			
VOCs (USEPA Method & MTBE Benzene Toluene Ethylbenzene	Sample Interval (ft) 8021B) (µg/L) 50 1 40 30	07/09/02 4'-6' <50 <1 <40 <30	07/09/02 4'-6' <50 <1 <40 <30	07/09/02 3'-5' <50 <1 <40 <30	07/10/02 4'-6' <50 <1 <40 <30	07/10/02 4'-6' <50 <1 <40 <30	07/10/02 20'-24' <50 <1 <40 <30	07/10/02 30'-34' <50 <1 <40 <30			
VOCs (USEPA Method & MTBE Benzene Toluene Ethylbenzene Total Xylenes	Sample Interval (ft) 8021B) (µg/L) 50 1 40 30 20	07/09/02 4'-6' <50 <1 <40 <30 <20	07/09/02 4'-6' <50 <1 <40 <30 <20	07/09/02 3'-5' <50 <1 <40 <30 <20	07/10/02 4'-6' <50 <1 <40 <30 <20	07/10/02 4'-6' <50 <1 <40 <30 <20	07/10/02 20'-24' <50 <1 <40 <30 <20	07/10/02 30'-34' <50 <1 <40 <30 <20			

Notes:

¹Chapter 62-770, FAC (April 30, 1999)

μg/L = micrograms per liter

Table 3-6 Summary of Fixed-Base Laboratory Groundwater Results

Site Assessment Report, Tank Site 283 Naval Station Mayport Mayport, Florida

Compound	FDEP Target Level ¹	MW-1		
- Compound	Sample Date	07/30/02		
VOCs (USEPA Method 8021B) (μg/L)				
Benzene	1	<1		
Toluene	40	<1		
Ethylbenzene	30	<1		
Total Xylenes	20	<1		
MTBE	50	<1		
USEPA 504.1 (μg/L)				
EDB	0.02	<0.02		
PAHs (USEPA Method 8310) (µg/L)				
Naphthalene	20	<2.2		
FL-PRO (USEPA Method 8270) (mg/L)				
TRPH	5	<0.29		
Metals Analysis (µg/L)				
Total Lead	15	2.7		
Notes: Chapter 62-770, FAC (April 30, 1999) Well was installed on 07/23/01.				

4.0 CONCLUSIONS AND RECOMMENDATIONS

The results of the SA and the additional site assessment activities at Tank Site 283 suggest the following:

- Headspace readings revealed no "excessively contaminated soils."
- No impacted soil was identified through the mobile laboratory analysis.
- Soil impacted with PAH constituents was identified by the fixed-base laboratory at concentrations
 exceeding FDEP SCTLs in the area of the former storage tanks area. The extent of hydrocarbon
 constituents in soil exceeding industrial SCTLs has been defined.
- No groundwater impacts were reported based on analysis by mobile laboratory or confirmed via fixed based laboratory analysis.

The detection of long chain hydrocarbons at the site combined with the lack of more volatile constituents suggests that hydrocarbons detected at the site are the result of historical releases that have subsequently undergone natural attenuation.

Based on the findings of the SAR, TtNUS recommends that a source removal be implemented for soils exceeding industrial SCTLs for PAH constituents located Tank Site 283. A source removal plan should be prepared and implemented after FDEP approval. The estimated area to be removed is at a minimum 60 ft by 40 ft by 3.5 ft in depth totaling 311 cubic yards. The impacted soil should be disposed at a State licensed disposal facility. Once the soil has been removed the monitoring well should be sampled and tested for PAH constituents. Prior to excavation, additional soil sampling should be performed to further refine the volume of soil exceeding industrial SCTLs for PAH constituents.

The Navy has determined that additional sampling is warranted prior to excavation to further refine the volume of soils exceeding industrial criteria. This information will be provided to the FDEP in form of a Source Removal Excavation Work Plan. The source removal plan will include provisions for post excavation groundwater sampling of monitoring well MPT-283-MW-01.

REFERENCES

Driscoll, Fletcher G., 1986. "Groundwater and Wells," St. Paul, Minnesota.

FDEP (Florida Department of Environmental Protection), 1992. DEP-001/92.

Hydro-Terra, 1993. Tank Closure Report, Naval Station Mayport Site 283.

Spechler, R.M., 1994. "Saltwater Intrusion and Quality of Water in the Floridan Aquifer System, Northeastern Florida": U.S. Geological Survey Water-Resources Investigations Report 92-4174, p 76.

USACE (United States Army Corp of Engineers), 1992. <u>Contamination Assessment Report for Site 1330, NAVSTA Mayport.</u> May.

USDA, (United States Department of Agriculture, Soil Conservation Services), 1978. <u>Soil Survey of City of</u> Jacksonville Duval, County Florida.

USEPA (United States Environmental Protection Agency), 1997. Standard Operating Procedures.

USGS (United States Geological Survey), 1997. "Ground-Water Flow in the Surficial Aquifer System and Potential Movement of Contaminants from Selected Waste-Disposal Sites at Naval Station Mayport, Florida". Water-Resources Investigations Report 97-4262.

APPENDIX A SAR SUMMARY SHEET

CONTAMINATION ASSESSMENT REPORT SUMMARY SHEET

Facility Name:	Site 285, Naval Station	Mayport		Reimbur	sement Site:	
Location:	Mayport, Florida			State Co	ntract Site:	
EDI #:		FAC I.D.#	Other:	Non-Prog.	_ 🗹	
Date Reviewed:		Local Go	overnment:			
(1) Source of Spill:	Leaking UST			Date of S	Spill: Unkr	nown
(2) Type of Product:	Gasoline Group	Gallons Los	st	Kero	sene Group	Gallons Lost
	☐ Leaded			☐ Kerose	ne	
	☐ Unleaded Regular			☑ Diesel		
	☐ Unleaded Premium			☐ JP-4 J	let Fuel	
	☐ Gasohol			☐ Heating	Fuel	
	☐ Undetermined			☐ Unknow	vn	
(3) Description of IR removed.	A: Soil from tank exce	avation		uct Removal: oil Removal: Incineration:	311 yd ³	(gals) (cubic yds) (cubic yds)
(4) Free Product still	I present (yes/no) No	_ Maximum a	pparent produc	t thickness:	N/A	(feet)
(5) Maximum Groun contamination le		VOA: <1 lead:		enzene: <u><1</u> MTBE: <u><5.0</u>	EDB:	
(6) Brief lithologic de	escription: Medium to f	ine grained sa	nd. No signific	ant lithologic v	ariations acro	ss site. Clay at
(7) Areal and vertica	l extent of soils contamina	tion defined (ye	es/no)	Υe	es	
Highest current	soil concentration (OVA:	8.4	ppm) or (EP/	A method 5030	0/8020:	ppb)
(8) Lower aquifer co	ntaminated? (yes/no)	No 	Depth of vertice contamination		N/A 	
(9) Date of last comp	plete round of groundwater	sampling:	7/10/02	_ Date of last	soil sampling	: _5//03
(10) QAPP approved	d? (yes/no) Date:8	3/24/98	_			
(11) Direction (e.g. N	N) of surficial groundwater t	flow: _	North	(Fig <u>3</u> -	on pag	je)_
(12) Average depth t	to groundwater:	3.5	(ft)			
(13) Observed range	e of seasonal groundwater	fluctuations:	@ 1	(ft) (Based or collected duri investigation)		ata
(14) Estimated rate of	of groundwater flow:	0.007	(ft/day)			
(15) Hydraulic gradie	ent across site: 0.0005	(ft/ft)				
(16) Aquifer characte Hydraulic condi Storage coeffic Aquifer thicknes Effective soil po Transmissivity	uctivity 4.34 ient - ss 40	Uni ft/da ft/ft ft % gal/d	y	Literature	& Pare, 1995 apacity Tests	
(17) Other remarks:	None		·			

APPENDIX B

TANK CLOSURE REPORT HYDRO-TERRA, 1993

HYDRO TERRA Environmental Services, Inc.

13997 Beach Boulevard • Jacksonville, Florida 32224 • (904) 223-4042

UNDERGROUND STORAGE TANK CLOSURE ASSESSMENT REPORT

OF

BUILDING NO. 283 SITE MAYPORT NAVAL BASE MAYPORT, FLORIDA

Prepared for:

DAVID BOLAND, INC. P.O. BOX 1870 TITUSVILLE, FLORIDA 32781-1870

AND

UNITED STATES NAVAL STATION
MAYPORT, FLORIDA
ENGINEERING DEPARTMENT
MAYPORT, FLORIDA 32228-0067

AND

CITY OF JACKSONVILLE

DEPARTMENT OF REGULATORY & ENVIRONMENTAL SERVICES
WATER QUALITY DIVISION-STORAGE TANK SECTION
421 WEST CHURCH STREET - SUITE 412
JACKSONVILLE, FLORIDA 32202-4111

JANUARY 10, 1993

Prepared by:

HYDRO TERRA ENVIRONMENTAL SERVICES, INC. 13997 BEACH BOULEVARD JACKSONVILLE, FLORIDA 32224

TABLE OF CONTENTS

INTRO	DDUCTIONSect	lon i	L
WORK	PERFORMEDSect	ion 2	2
	Tank Removal Activities		
	Environmental Monitoring Activities		
ILLU	STRATIONS,Sect	ion :	3
	Site Location & Topographic Map		
	Facility Site Base Map		
	Tank and Soil Sampling Location Map		
	Table 1 - OVA/FID Measurement Results		
LABO	RATORY REPORTS AND RECORDSSect	ion	4
FDER	FORMS & MANIFESTSSect	ion	5
	DER Form 17-761.900(1)		
	DER Form 17-761.900(2)		
	DER Form 17-761.900(5)		
	DER Form 17-761.900(6)		
	Tank Disposal Certificate		
	Tank Fluid Disposal Manifest		

UNDERGROUND STORAGE TANK CLOSURE ASSESSMENT REPORT OF BUILDING NO. 283 SITE MAYPORT NAVAL BASE MAYPORT, FLORIDA

Section 1. INTRODUCTION

One 2,000-gallon underground storage tank (UST) was removed from the Building No. 283 (Pump House) located on Massey Avenue, approximately 350 feet east of Maine Street, Mayport Naval Base, Duval County, Florida (Figure 1). The UST was used to store and dispense diesel fuel for an on-site generator. The UST was located approximately 110 feet north of Massey Avenue and 25 feet west of the pump house (Figure 2). The following paragraphs summarize the field activities and test results of the UST removal and closure assessment.

Section 2. WORK PERFORMED

Tank Removal Activities - On December 23, 1992 one 2,000-gallon diesel UST was removed from the site. The tank removal activities were conducted in accordance with DER's Chapter 17-761 Florida Administrative Code (FAC) by Hydro Terra Environmental, Inc. (HTE), a state certified pollutant storage contractor (PSCC # 050718). The liquid contents were removed from the UST prior to its removal. A copy of the manifest documenting the liquid disposal is attached in Section 5.

Following the UST removal, a visual inspection of the UST revealed some evidence of corrosion, but no pitholes or cracks, or evidence of a discharge was observed. The UST was subsequently cleaned, degassed, and transported off site for proper disposal. A copy of the disposal ticket for the UST, and the Tank Removal Form - DER 17-761.900(5) are attached in Section 5.

Environmental Monitoring Activities - During the tank removal activities, eight samples (A through H) were collected from the excavated soils. In addition, seven soil samples (3 through 7) were collected from the bottom and walls of the open tank pit, and along the underground product line (samples 1 and 2) between the generator's day tank and the UST. Product line samples were collected every twenty feet of pipe. Approximate soil sample locations and cross-sections of the tank pit area are shown in Figure 3 (see Section 3).

Each soil sample was placed in a half-filled 16-ounce mason jar which was sealed with aluminum foil. In accordance with DER's Chapter 17-770.200 Florida Administrative Code (FAC) "Petroleum Contamination Cleanup Criteria", all samples were field analyzed for petroleum hydrocarbon vapors using a Foxboro Century 128GC - Organic Vapor Analyzer (OVA) equipped with a flame ionization detector. In addition to screening the samples with the standard (unfiltered) OVA probe, a probe equipped with an activated charcoal filter was used to screen for naturally occurring vapors (e.g., methane). The water table was encountered at a depth of approximately 5.0 feet below land surface (bls) during the tank removal activities.

OVA screening results for samples collected from the excavated soils indicated the presence of no "excessively" contaminated soils at the site. However, OVA results did indicate the presence of moderate levels of petroleum hydrocarbon vapors in five of the eight samples collected during the excavating. OVA readings ranged from 2 parts per million (ppm) to 25 ppm. According to DER's Chapter 17-770.200(2) FAC, soil samples that exhibit OVA readings greater than 50 ppm for soils contaminated by "Kerosene (diesel or mixed fuel) Analytical Group" compounds are considered "excessively" contaminated.

Soils with OVA readings less than 50 ppm are considered contaminated but not "excessively". Four of the five soil samples collected from the bottom and walls of the open tank pit indicated the presence of petroleum hydrocarbon vapors, two of which indicated the presence of "excessively" contaminated soils. However, these two samples were collected at depths below the top of the water table. No hydrocarbon vapors were detected in the two samples collected along the product line. OVA results for all of the soil samples are listed in Table 1.

Following the removal of the UST and the monitoring activities, the excavated soils along with clean soil were placed back into the excavation. After the excavation was backfilled, a water sample was collected from a temporary well point (GW-1) that was installed in the tank pit area. The groundwater sample was subsequently analyzed for "Kerosene Analytical Group" compounds by EPA Method 602 (including MTBE) and Method 610.

Analytical results for sample GW-1 indicated the presence of EPA Method 610 compounds at levels above the current cleanup target levels established in DER's Chapter 17-770 FAC Petroleum Contamination Cleanup Criteria. No EPA Method 602 compounds were detected above the method detection limits. A copy of the laboratory report is attached in Section 4.

A copy of Closure Assessment Form, DER 17-761.900(6) is attached in Section 5.

Section 3. ILLUSTRATIONS

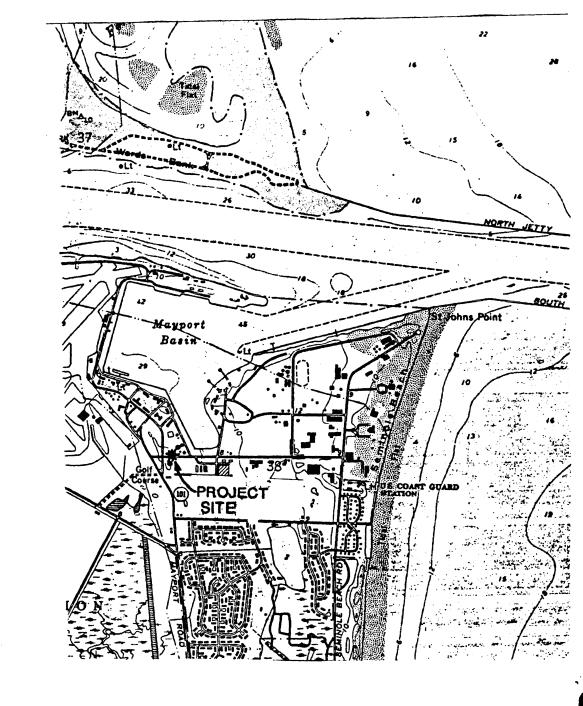


FIGURE 1. SITE LOCATION AND TOPOGRAPHIC MAP

T

MAYPORT NAVAL BASE
MAYPORT, FLORIDA

Project No.

Date

Drawing No.

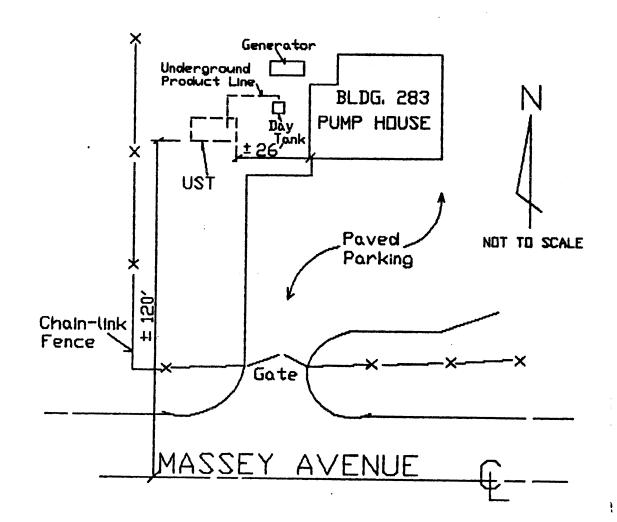
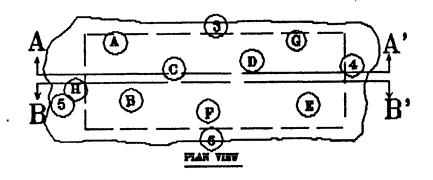
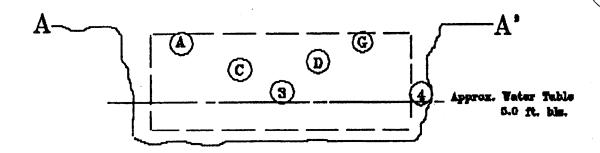




FIGURE 2. Facility Site Base Map

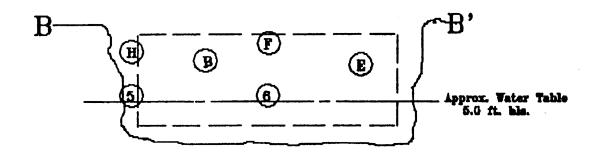


Figure 3. Soil Sample Locations for OVA/FID Measurements >

Table 1. Results of the OVA/FID Soil Screening.

SAMPLE LOCATION/ID	OVA - STANDARD PROBE (ppm)	OVA - ACF PROBE (ppm)	ACTUAL OVA READING (ppm)		
Excavated Soils:	0	0	0		
В	0	0	0		
С	0	0	0		
D	110	85	25		
E	50	35	15		
F	5	2	3		
G	38	25	13		
H	2	0	2		
Product Line: 1	0	0	0		
2	3	3	0		
Open UST Pit:	0	0	0		
4	380	235	145		
5	370	245	125		
6	6	4	2		
7 5t - Foot	15	10	5		

ft = feet

ppm = parts per million
OVA = organic vapor analyzer

ACF = activated charcoal filter

Section 4. LABORATORY REPORTS AND RECORDS

Environmental Conservation Laboratories

4810 Executive Park Ct., Ste. 211 Jacksonville, Florida 32216-6069 904 / 296-3007 Fax 904 / 296-6210

Laboratories
DHRS Certification No. E82277

CLIENT: Southeastern Environmental

Audits, Inc.

ADDRESS: 8711 Perimeter Park Blvd.

Suite 11

Jacksonville, FL 32216

ATTENTION: Randy Pfahler

REPORT # :JX2666

DATE SAMPLED : December 23, 1992

DATE SUBMITTED: December 23, 1992

DATE REPORTED : December 31, 1992

PAGE 1 OF 4

SAMPLE IDENTIFICATION

Aqueous samples submitted and identified by CLIENT as:

AUD-353.11

GW-1 (12/23/92)

I-ABORATORY MANAGER

Charles M. Ged

ENCO LABORATORIES

REPORT #

;JX2666

DATE REPORTED: December 31, 1992

REFERENCE

:AUD-353.11

PAGE 2 OF 4

RESULTS OF ANALYSIS

EPA METHOD 602 - VOLATILE AROMATICS	GW-1	LAB <u>BLANK</u>	UNITS
Methyl-t-butyl Ether	ND(1)	ND(1)	ug/L
Benzene	ND(1)	ND(1)	ug/L
Toluene	ND(1)	ND(1)	ug/L
Ethylbenzene	ND(1)	ND(1)	ug/L
Total Xylenes	ND (1)	ND(1)	ug/L
Chlorobenzene	ND(1)	ND(1)	ug/L
1,2-Dichlorobenzene	ND(1)	ND(1)	ug/L
1,3-Dichlorobenzene	ND(1)	ND(1)	ug/L
1,4-Dichlorobenzene	ND(1)	ND(1)	ug/L
. rogate:	% REC	% REC	LIMITS
Bromofluorobenzene	90	94	70-123
Date Analyzed	12/30/92	12/30/92	
		· ·	

⁼ None Detected to level in parentheses

ENCO LABORATORIES

:JX2666 REPORT #

DATE REPORTED: December 31, 1992

:AUD-353.11

RESULTS OF ANALYSIS

EPA METHOD 610 -		LAB	
POLY AROMATIC HYDROCARBONS	<u>GW-1*</u>	BLANK	UNITS
Acenaphthene	ND(100)	ND(10)	ug/L
Acenaphthylene	ND(100)	ND(10)	ug/L
Anthracene	ND(100)	ND(10)	ug/L
Benzo (a) anthracene	ND(100)	ND(10)	ug/L
Benzo (b) pyrene	ND(100)	ND(10)	ug/L
Benzo (b) fluoranthene	ND(100)	ND(10)	ug/L
Benzo (g,h,i) perylene	ND(100)	ND(10)	ug/L
Benzo (k) fluoranthene	ND(100)	ND(10)	ug/L
Chrysene	ND(100)	ND(10)	ug/L
Pibenzo (ah) anthracene	ND(100)	ND(10)	ug/L
oranthene	ND(100)	ND(10)	ug/L
Fluorene	ND(100)	ND(10)	ug/L
Indeno (123-cd) pyrene	ND(100)	ND(10)	ug/L
1-Methyl naphthalene	ND(100)	ND(10)	ug/L
2-Methyl naphthalene	ND(100)	ND(10)	ug/L
Naphthalene	ND(100)	ND(10)	ug/L
Phenanthrene	ND(100)	ND(10)	ug/L
Pyrene	ND(100)	ND(10)	ug/L
•			
Surrogate:	% REC	% REC	LIMITS
2-Fluorobiphenyl	110	113	30-117
Date Extracted	12/29/92	12/29/92	
	12/29/92	12/30/92	
Date Analyzed	12/30/92	12/30/32	

⁼ Higher detection limit due to matrix interference
= None Detected to level in parentheses

ENCO LABORATORIES

REPORT # :JX2666

DATE REPORTED: December 31, 1993

REFERENCE :

:AUD-353.11

PAGE 4 OF 4

QUALITY CONTROL DATA

PARAMETER	% RECOVERY MS/MSD/LCS	ACCEPT LIMITS	% RPD Ms/MsD	ACCEPT LIMITS
•				
EPA Method 602				•
Benzene	100/100/120	50-131	<1	17
Toluene	98/94/98	56-132	4	14
Ethylbenzene	106/104/106	54-127	2 .	18
Total Xylene	108/103/114	49-147	5	14
EPA Method 610				
2-Methylnaphthalene	112/109/98	31-126	3	46
> renaphthene	107/104/93	28-125	3	40
ananthrene	113/113/86	35-143	<1	29
Chrysene	84/107/64	14-158	24	42
Benzo(k)pyrene	108/101/94	23-156	7	47
			· ·	and the second second

MS = Matrix Spike

MSD = Matrix Spike Duplicate

= Less Than

X266!

SE	A	,INC	SC 91 3. JA	OUTH 24 C	HEASTERN E CYPRESS GR SONVILLE, F	ENVIRONI EEN DRIV LORIDA	MENT VE 32256	'AL AI	UDITS	, INC		IIAH	N OF	CU	STO	DDY	RECORD PAGEOF
PROJECT NO.	PROJ	IECT NAM	E		3.11			\mathcal{T}	\mathcal{T}	\mathcal{T}	\mathcal{T}	\mathcal{T}	T	T	$\cdot \int$	\int	REMARKS
SAMPLERS (SIG	gnature)	and	1		Paller	8	2,	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \									
STATION NUMBER	DATE	TIME	COMP.	GRAB	STATION LOCATION	Š.	10	1/0				/					
GW-1	12/23			X	tarkpit	3	X	X									
		· .	\vdash				-										
			$\left \cdot \right $														
									·								
	1.+																
RELINGUISHE	Hal	lle.	DAT 13/2	73	TIME RECEIVE	Du	<u> </u> Ju	MET	THOD OF:	SHPMEN	<u>Γ</u>		<u> </u>			REMA	RKS:
RELINQUISHE	BY:	كين	DAT	TE / T	TIME RECEIVE	D BY:		REC	EIVED FO	DA LABO	RATORY	BY:	124	15	00 2		#

Section 5. FDER FORMS & MANIPESTS

Florida Department of Environmental Regulation

Twin Towers Office Bidg. ● 2600 Blair Stone Road ● Tallahassee, Florida 32399-2400

DER Form # 17-781.900(1)
Form Title Discharge Reporting Form
Ellective Date. December 10, 1990
DER Application No. (Filled in by DER)

Discharge Reporting Form

Use this form to notify the Department of Environmental Regulation of:

- 1. Results of tank tightness testing that exceed allowable tolerances within ten days of receipt of test result.
- 2. Petroleum discharges exceeding 25 gallons on pervious surfaces as described in Section 17-761.460 F.A.C. within one working day of discovery.
- 3. Hazardous substance (CERCLA regulated), discharges exceeding applicable reportable quantities established in 17-761.460(2) F.A.C., within one working day of the discovery.
- 4. Within one working day of discovery of suspected releases confirmed by: (a) released regulated substances or pollutants discovered in the surrounding area, (b) unusual and unexplained storage system operating conditions, (c) monitoring results from a leak detection method or from a tank closure assessment that indicate a release may have occurred, or (d) manual tank gauging results for tanks of 550 gallons or less, exceeding ten gallons per weekly test or five gallons averaged over four consecutive weekly tests.

Mail to the DER District Office in your area listed on the reverse side of this form

PLEASE PRINT OR TYPE Complete all applicable blanks

1.	. DER Facility ID Number:	2. Tank Num	ber:1	3. Date: 12-30-92
4.	. I GCIIILY 1101/10	ump House at Water Sys	stem Storage	· · · · · · · · · · · · · · · · · · ·
	Facility Owner or Operator:	AS Mayport		-
	Facility Address:B	ldg 283 (demolished) N	Mayport, Florida	
		County:		
	Mailing Address:	OIC P.O. Box 5 NAS Ja	acksonville, Flor	ida 32212-0005
5.	Date of receipt of test results or	discovery:12-31-92		month/day/year
6.	 Method of initial discovery. (circle A. Liquid detector (automatic or B. Vapor detector (automatic or C. Tightness test (underground) 	manual) D. Emptying and Insp manual) E. Inventory control.	G. Closure: OV	e signs of a discharge in the vicinity.
7 .	. Estimated number of gallons dis	scharged: Unk		
8.	What part of storage system has	s leaked? (circle all that apply) A. (Dispenser B. Pipe C. Fi	itting D. Tank (E.) Unknown
9.	B. unleaded gasoline F. av	ehicular diesel L. used/waste oil	chlorine and derivatives Service CAS number)_	includes pesticides, ammonia, (write in name or Chemical Abstract
10.	Cause of leak. (circle all that ap A Unknown C. Loose con B. Split D. Corrosion	• ••	G. Spill	I. Other (specify)
11.	Type of financial responsibility. (c A. Third party insurance provide B. Self-insurance pursuant to Ch	ed by the state insurance contractor	C. Not applicable E. D. None	FED GOVT.
	Edward A. Smith-H Printed Name of Owner, Operate	and belief all information submitted Iydro Terra ESI or or Authorized Representative	Sodward 4	or or Authorized Representative
	need it desired or of throng operation	/	/ - g	

Florida Department of Environmental Regulation Twin Towers Office Bldg. • 2600 Blair Stone Road • Tallahassee, Florida 32399-2400

DER Form # 17-781.800(2)	
Form Title Storage Tenk Registration Form	
Effective Date December 10, 1990	
DER Aggication No	
(Filed in by DER)	

Storage Tank Registration Form

Please Print or Type - Review Instructions Before Completing Form

		, ,,,,,,,		•	•		Facility Type: _	F		
	•				ility Revision 🛭				······································	
	_				ility Hevision &					
4. County	and Code o	or tank(s) loca	ation:	Duvai			/			
5. Facility	Name:	Pump Ho	ouse at	Water	System S	torage				
Tank(s)	Address:	Bldg 28	33 Masse	y Ave.	(demoli	shed)	Mayport	, Fla.	······································	
City/Sta	ite/Zip:	Mayport	FIOR							
Contac	t Person:						Telephon	o: () .	· · · · · · · · · · · · · · · · · · ·	
6. Financi	al Responsib	ility Type:						·		
7a. Tank(s)	Owner:	Dep	partment	of th	e Novy			<u>:</u>		
Owner	Mailing Addr	'ess:	C P.O.							· •
City/Sta	ite/Zip:	NAS	Jackso	nville	, Florid	a 3221	2-0005			
Contac	t Person:						Telephon	B: () .		
7b. New O	wner Signatu	re/Change D)ate:						/	/
`.					ide:°					
	Com	iplete One	•		At This Fed	• •		ee instruc	tions)	
			Complete	9 - 16 for ta	nks in use; 9	19 for tan	ks out of use			
9	10	11	12	13	14	15	16	17	18	19
1	2000	G	Unk	U	С	В	M	В	0	12-92
2	300	B-G	Unk	A	С	В	M	В	0	12-92
	1			i	1 1		ł	1	ı	
	ļ				_		1			
Hydr	o Terra	Enviro	nmental	Servi	ces		PCC 05	50718		
_{20.} Hydr	o Terra	Enviro		Servi	ces	DPR#	PCC 05		gulation Lic	ense Number*
		Certified Cor	ntractor*	Servi	ces				gulation Lic	ense Number*
For ne	w tank install	Certified Cor ation or tank	ntractor c removal	e en transcela de la companya de la	ces_	Depa	artment of Pro	fessional Re	gulation Lic	ense Number*
For ne	w tank install	Certified Cor ation or tank edge and be	ntractor c removal lief all inform.	e en transcela de la companya de la	tted on this for	Department is true, a	accurate and	riessional Re complete.	-	
For ne	w tank install	Certified Contaction or tanked and beautiful contactions on the contaction of the co	ntractor x removal lief all inform	e en transcela de la companya de la	tted on this for	Depa	accurate and	riessional Re complete.	gulation Lic	2

Florida Department of Environmental Regulation

Twin Towers Office Bldg. ● 2600 Blair Stone Road ● Tallahassee, Florida 32399-2400

OSR Form 4 17-781.000(6)	
Form Title Closure Assessment Form	
Elective Date December 10, 1990	
DER Application No(Filled in by DER)	
6 and 11 of 2014	

Closure Assessment Form

Owners of storage tank systems that are replacing, removing or closing in place storage tanks shall use this form to demonstrate that a storage system closure assessment was performed in accordance with Rule 17-761 or 17-762, Florida Administrative Code. Eligible Early Detection Incentive (EDI) and Reimbursement Program sites do not have to perform a closure assessment.

ti ve	(EDI) ar	nd Reimb	urseme	ent Program sites do not have to perform a closure assessment.
				Please Print or Type வரும் நடிகள் வரும் அன்றும் வரும்
1	Date:			12-30-92
١.		cility ID	Numbe	or: 3. County:Duval
		Name:		Pump House at Water System Storage
	•	Owner:		United States Government
	•	Address:		Bldg 283 Massey Ave. (demolished) Mayport, Florida
	_	Address		ROIC P.O. Box 5 NAS Jacksonville, Fla 32212-0005
				9. Facility Operator: Mayport NAS
	-		-): (Circle one or both) Aboveground or B Underground
		_		Diesel & Gasoline
				cle one) A. Replaced B. Removed C. Closed in Place D. Upgraded (aboveground tanks only)
		r of Tank		
	11011100		J 0.00	
	:			Facility Assessment Information
		Not		Secretary of the secret
Yes	No	Applicable	•	A Company of the Comp
Ц	Ц		1.	s the facility participating in the Florida Petroleum Liability Insurance and Restoration Program (FPLIRP)?
ΚX	Ц			Nas a Discharge Reporting Form submitted to the Department?
V V				f yes, When: Where: s the depth to ground water less than 20 feet?
4	₹ <u>V</u>	П		s the depth to ground water less than 20 leac? Are monitoring wells present around the storage system?
	سم	•		f yes, specify type: Water monitoring Vapor monitoring
	XX			s there free product present in the monitoring wells or within the excavation?
	XX		6. \	Nere the petroleum hydrocarbon vapor levels in the soils greater than 500 parts per million for gasoline?
		\Box		Specify sample type: Vapor Monitoring wells Soil sample(s)
XX	Ш		7. \	Nere the petroleum hydrocarbon vapor levels in the soils greater than 50 parts per million for diesel/kerosene?
		\Box		Specify sample type: Vapor Monitoring wells Soil sample(s)
ل <i>ق</i> د 			8. V	Vere the analytical laboratory results of the ground water sample(s) greater than the allowable state target levels? See target levels on reverse side of this form and supply laboratory data sheets)
ᆜ	Ц	XX	9. li	a used oil storage system, did a visual inspection detect any discolored soil indicating a release?
- 1.	님	Unk		Are any potable wells located within ¼ of a mile radius of the facility?
7	Ш		11.	s there a surface water body within $\frac{1}{4}$ mile radius of the site? If yes, indicate distance: $\frac{1}{4}$ mi.

netalistion (Contractors
DERI

Underground Storage Tank Installation and Removal Form For Certified Contractors

Pollutant Storage System Specialty Contractors as defined in Section 489.113, Florida Statutes (Certified contractors as defined in Section 17-761.200, Florida Administrative Code) shall use this form to certify that the installation, replacement or removal of the storage tank system(s) located at the address listed below was performed in accordance with Department Reference Standards.

٠						
Ge	eneral Facility Information	:				
1.	DER Facility Identification No:					
	. Facility Name: Pump House at Water System Storage Telephone: ()					
3.	Street Address (physical location): Bldg 283 Massey Ave (demolished) Mayport, Fla					
4.	Owner Name: Department of the Navy Telephone: ()					
5.	Owner Address: ROIC P.O. Box 5 NAS Jacksonville, Florida 32212-0005					
	Number of Tanks: a. Installed at this time0 b. Removed at this time2 Tank(s) Manufactured by:Unk					
	Date Work Initiated: 12-23-92 9. Date Work Completed: 12-23-92					
	nderground Pollutant Tank Installation Checklist ase certify the completion of the following installation requirements by placing an (X) in the appropriate box.					
	The tanks and piping are corrosion resistant and approved for use by State and Federal Laws.	\Box				
_	Excavation, backfill and compaction completed in accordance with NFPA (National Fire Protection Association) 30(87), API (American Petroleum Institute) 1615, PEI (Petroleum Equipment Institute) RP100-87 and the manufacturers' specifications.					
3.	Tanks and piping pretested and installed in accordance with NFPA 30(87), API 1615, PEI/RP100(87) and the manufacturers' specifications.					
4 .	Steel tanks and piping are cathodically protected in accordance with NFPA 30(87), API 1632, UL (Underwriters Laboratory) 1746, STI (Steel Tank Institute) R892-89 and the manufacturer's specifications.					
5.	Tanks and piping tested for tightness after installation in accordance with NFPA 30(87) and PEI/RP100-87.					
6.	Monitoring well(s) or other leak detection devices installed and tested in accordance with Section 17-761.640, Florida Administrative Code (F.A.C.)					
7.	Spill and overfill protection devices installed in accordance with Section 17-761.500, F.A.C.					
8.	Secondary containment installed for tanks and piping as applicable in accordance with Section 17-761.500, F.A.C.					
Ple	ase Note: The numbers following the abbreviations (e.g. API 1615) are publication or specification numbers issued by these instutu	ıtions.				
Un	derground Pollutant Tank Removal Checklist					
٠.	Closure assessment performed in accordance with Section 17-761.800, F.A.C.	X				
∠.	Underground tank removed and disposed of as specified in API 1604 in acordance with Section 17-761.800, F.A.C.	x				

HYDRO TERRA Environmental Services, Inc.

13997 Beach Boulevard • Jacksonville, Florida 32224 • (904) 223-4042

December 30, 1992

TANK DISPOSAL CERTIFICATE

This is to certify that one 2,000 gallon underground storage tank (5.333' dia. X 12' length), and one 300 gallon storage tank (3.083' dia. X 5.833' length) removed on 12-23-92 from Mayport Naval Station Building 283 on Massey Avenue Mayport, Florida, were degassed, decommissioned, cleaned, cut up and transported to Chatham Iron & Metal Company in Jacksonville, Florida for disposal as scrap steel. Visual inspection of these tanks revealed no apparent defects in tank integrety.

Certified By

Edward A. Smith

/Vice President

INDEPENDENT WASTE OIL, INC.

2146 BoPeep Court Jacksonville, Fl 32210 Bus: 781-8903 Charge Te.

LICENSED COLLECTOR, STORER & TRANSPORTER

		ADEAUTIES ATION					
16	-	IDENTIFICATION					
HKIRC		erra		DATE SH	PPED /d-	<u> </u>	
	G	ENERATOR/SHIPPER***	. ,				
1399	Z		5/4	JAME .			
-		ADDRESS					
				PHONE			
CITY		STATE	ZIP				
		WASTE INFORMATION	Ж				
	EPA						
NON HAZARDOUS WASTE	HAZ. WASTE	DESCRIPTION AND CLASSIFICATION (Proper Shipping Name, Class of		Ot	EXEMPTION OR NO LABELS	FLASH POINT (IN°C)	
	100	ID4 per 172.101, 172.202, 172, 20		NA"	MEG.D.	WHEN REQ'D	
YES	1 _	Jeed Oil, Tank Bottom, Combustible	Liquid	1993		> 60°	
<u> </u>	_	Warter 118		1	Fue	· .	
110		43	rd		1		
NO				<u> </u>	<u> </u>	<u>L</u>	
SPECIAL HANDLI		- 11		_			
1cked Up (ZNA:	S MAYPORT - Do	LAN	ot	to Jec	T.	
	CERTI	FICATION.	T				
This is to certify ur materials are prope	riy ciassi viy ciassi	ally of faw that the above-named fied described, packaged, market		10			
and la sels d, and ar ding to the applicat	e in peop	ally praw that the above-named lied/described, packaged, marked er dapation for transportation accor- tions of the benament of transpor- taging school Agency.	NET GALLONS 150C				
		MUI 12-23-9Z	1				
GENERATOR'S SIGNA	TURE	DATE	Ī			15cm	
/		2		NET	BALANCE_	1700	
	,		201	~E DE	R GALLON		
TRANSPORTER#1 SIGN	ATURE & D	ATE TRANSPORTER #2 SIGNATURE & DATE (II required)	"	VE,FEI	· GALLON		
/-	استرثن	the sadement	1	NET	DOLLARS		
-7 7		10-23-5	1		☐ CASH	- CHARG	
JSDF SIGNATURE		DATE	₹		L. CASH	- CHARG	
			J .				
					•		

Charyl FYI

5090 Ser N4E/5452 31 Dec 92

Water Quality Division
Regulatory & Environmental Services
City of Jacksonville
421 West Church Street, Suite 412
Jacksonville, FL 32202-4111

Subj: DISCHARGE NOTIFICATION FDER FACILITY 168626008

Gentlemen:

The enclosed Discharge Reporting Form is submitted for petroleum contamination discovered during removal of a 2,000 gallon underground diesel tank located at Building 283, Potable Water Treatment Plant. This site will be included in the Petroleum Contamination Agreement of October 1990, and a contamination assessment report and a remedial action plan will be performed.

If you have any questions, please contact Ms. Cheryl Mitchell or Mr. Michael Davenport, N4E, at 904-270-6730.

Sincerely,

CHRIS A. TAYLOR
Commander, CEC, U.S. Navy
Staff Civil Engineer
By direction of the
Commanding Officer

Encl:

(1) FDER Form 17-761.900(1)

Copy to: SOUTHNAVFACENGCOM (Code 18237) FDER Tallahassee (Mr. Eric Nuzie)

bc: N4E Chron

c:\wpdocs\DischNot.283/p1/12-23

Charyl FYI

5090 Ser N4E/5452 31 Dec 92

Water Quality Division
Regulatory & Environmental Services
City of Jacksonville
421 West Church Street, Suite 412
Jacksonville, FL 32202-4111

Subj: DISCHARGE NOTIFICATION FDER FACILITY 168626008

Gentlemen:

The enclosed Discharge Reporting Form is submitted for petroleum contamination discovered during removal of a 2,000 gallon underground diesel tank located at Building 283, Potable Water Treatment Plant. This site will be included in the Petroleum Contamination Agreement of October 1990, and a contamination assessment report and a remedial action plan will be performed.

If you have any questions, please contact Ms. Cheryl Mitchell or Mr. Michael Davenport, N4E, at 904-270-6730.

Sincerely,

CHRIS A. TAYLOR
Commander, CEC, U.S. Navy
Staff Civil Engineer
By direction of the
Commanding Officer

Encl:

(1) FDER Form 17-761.900(1)

Copy to: SOUTHNAVFACENGCOM (Code 18237) FDER Tallahassee (Mr. Eric Nuzie)

bc: N4E Chron

c:\wpdocs\DischNot.283/pl/12-23

APPENDIX C SOIL BORING LOG

TŁ	Tetra Tech NUS, Inc.
----	----------------------

DRILLING RIG:

BORING LOG

Dago	_	.f	
Page	0	"	

SB-1 PROJECT NAME: CTO 230 / Tank Site 283 **BORING NUMBER:** PROJECT NUMBER: N4195 DATE: 07.09.02 DRILLING COMPANY: Preferred Drilling Solutions, Inc. SCIENTIST: David Siefken DPT Tim Colvard

DRILLER:

					MATERIAL DESCRIPTION			PID/FID Reading (ppm			pm)		
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistenc y or Rock Hardness	Color	Material Classification	U S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
	0-8"						grass and organic material						
							loose gray and white, fine, s	ilty,s	sand with shell has	sh			
		/					becoming more compact at	wat	er table (3.5 ft bls)				
	16'	/					compact gray and white, fin	e, si	lty,				
							sand with a trace of shell	hasl	າ				
	24'						tightly packed, gray, very fine, sand						
							- with shell hash						
	32'						ighly packed, gray to greenish gray, fine, sand						
							trace of shell hash						
	34'						tightly packed, greenish gra	y, ve	ery fine, sand				
		\angle					end at boring 34 ft bls.						
		$\overline{/}$											

		ole. Increase reading freque	ncy if elevated response read.	Drilling Area	
Remarks:				Background (ppm):	
Converted to Well:	Yes	No	Well I.D. #:		

APPENDIX D WELL COMPLETION LOG

MONITORING WELL SHEET

WELL No.: MPT-283-MW1

PROJECT No.: N4 SITE: Blo	S MPT 1195 d 283	DRILLING Co.: DRILLER: DRILLING METHO		BORING No.: DATE COMPLETE NORTHING:	MW-1 7.23.02
PROJECT No.: N4 SITE: Blo GEOLOGIST: Ground Elevation = Datum:	1195	DRILLER:	D: HS Cent. Pump Elevation / Depth of Top of Elevation / Height of Top o	DATE COMPLETE NORTHING: EASTING: Riser: face Casing: 8" Steel Quikreet 2" PVC 8" oock: Type 1 30/65 Sand Filter Pack: Screen: PVC 0.01 inch 2" 20/30 n of Screen:	
	Not to	Scale	Type of Backfill Below Wel Elevation / Total Depth of B		/ 13.5'

APPENDIX E FIELD FORMS

Tetra Tech NUS, Inc. GROUNDWATER SAMPLE LOG SHEET

Project Site Name: Project No.: [] Domestic Well Data [X] Monitoring Well Data [] Other Well Type: [] QA Sample Type:	N4195				Sample ID No.: Sample Location: Sampled By: C.O.C. No.: Type of Sample: [X] Low Concentrat			
			SAMPLIN	G DATA				
Date: 7-30-02	Color	рН	S.C.	Temp.	Turbidity	DO	Colinity	Other
Time: 1315	Visual	Standard	mS/cm	°C	NTU	mg/l	ORP	
Method: Low Flow Peristaltic	CL	7.78	0.513	25.10	4.2	0.48	7183	
			PURGE	1			<u> </u>	
Date: 7.30.02	Time	pН	S.C.	Temp (°C)	Turbidity	DO	Salinity	ORP
Method: Low Flow Peristaltic								
Monitor Reading (ppm): 🔘								
Well Casing Diameter: 2								
Well Casing Material: りしこ								
Total Well Depth (TD): (2-7-				SEE	DATA	SHE	RTS	
Static Water Level (WL): 432								
One Casing Volume(gal/L): 5								
Start Purge (hrs): 12:30								
End Purge (hrs):								
Total Purge Time (min):	<u> </u>							
Total Vol. Purged (gal/L):								
rotar voi: r trigoti (garz):		SAMPI	E COLLECTI	ON INFORMA	TION			
Analysis		1	rvative	******	Container Re	quirements		Collected
8260B VOH & VOC		HCL			3) 40 ml vials	7		
EDB 504.1		none		3) 40 ml vials			103	
PAH 8310		none		(2) 1 L				127
TRPH FL- PRO		H2SO4			(2) 1 L			
Lead (total)		HNO3		(1) 500 ml				
		0	BSERVATIO	NS/NOTES				
4	.		1	J.6	-	4. 0 4		
EQUP	SLAW	K	12	20	(A	nbw		
(0)								
							_	
Circle if Applicable:					Signature(s):		1	
MS/MSD Duplicate ID No	.:				A		\mathcal{J}	
					2	//	//_	

PROJECT SITE NAME:	CTO 230	WELL ID.:	MPT 283-MW-01-01
PROJECT NUMBER:	N4195	DATE:	7/30/2002

Time	Water Level	Flow	рН	Cond.	Turb.	DO	Temp.	ORP	Comments
(Hrs.)	(Ft. below TOC)	(mL/Min.)	(S.U.)	(mS/cm)	(NTU)	(mg/L)	(Celsius)	(mV)	
1230	4.32	500							
1240	4 .34	න ුව	7.81	0.514	5.0	0.62	24.88	-142	
1250	4.34	500	7.89	0.513	4.2	0.49		-182	
1255	4.34	500		0.512	3.1	0.44	25.11	-176	
1300	4.34	500	7.78	B.515	4,2	७,५४	25.10	-183	
1315	SAMPLE								
		1							
				<u> </u>					
		$\overline{}$				<u> </u>			
			$\overline{}$						
ļ			\						
			\times						
			— / <i>)</i>						
			/	X					
				11					
				X		7	,6		
				· ·					
	9	ρ					. ,		

PAGE__OF__

GROUNDWATER LEVEL MEASUREMENT SHEET

Daria de Noma											
Project Nan	ne:		CTO 230		-	N4195					
Location: Weather Co	- 1:4:		Bld 283, Maypor	<u>t</u>	-	DS	Dinnan T				
Tidally Infl			 s_X No		Remarks:	Measuring Device: Dipper-T					
114411,	Г	T			T						
Well or Piezometer Number	Date	Time	Elevation of Reference Point (feet)*	Total Well Depth (feet)*	Water Level Indicator Reading (feet)*	Thickness of Free Product (feet)*		Comments			
Mu-1	7/30/	1217		12.7	4.32			Good well			
		i e									
						-					
					,						
				V.			12	, k , g			
	· · · · · ·						. %				
							1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	***			
			4.11				:				
			·			, " atte 5					
				, , , , , , , , , , , , , , , , , , ,							
						:					

Project Location Weather			NAS LEX MAY	Project No.: Personnel: Measuring De	DS d	195 MD US H20 A	obe	
Tidally Influenced: Well or Piezometer Date Number		Yes No Solution of Time Reference Point (feet)*		Total Well Depth (feet)*	Remarks: Water Level Indicator Reading (feet)*	Thickness of Free Product (feet)*	i e	Comme
PI	7/9/02	1623		6	4,83		MIODE	R 7708
P2	7/9	1625		6	4,08			
P3	7/9	1629		6	3.36			
P4	7/9	1627		6	4.02			
PI	7/10	6930			4.84		Low T	IDE
P2	7/10	6432			4.09			
P3	7/10	6 935			3.37			
PY	7/10	0934			4.03			
PI	7/10	1506			4,86		H16H	DO
PZ	7/10	1507			4.11		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1101
P 3	7/10	1509			3.39			
PY	7/10	1508			4.05			

^{*} All measurements to the nearest 0.01 foot

Tŧ	Tetra Tech NUS, Inc
----	---------------------

MONITORING WELL DEVELOPMENT RECORD

Page	of	
ruge		

Well: 283-MW1	Depth to Bottom (ft.): 12.7	Responsible Personnel: DAULD SIEFKEN
Site: <u>BLD 283</u>	Static Water Level Before (ft.): 4.14	
Date Installed: 7 · 23. 02	Static Water Level After (ft.): 4.28	Project Name: CTO 230
Date Developed: 7.23,02	Screen Length (ft.):	Project Number: ~ 4195
Dev. Method: <u>Pun P</u>	Specific Capacity:	
Pump Type: <u>Centur</u> F	_Casing ID (in.):2"	

Time	Estimated Sediment Thickness	Cumulativ e Water Volume	Water Level Readings (Ft. below TOC)	Temperature (Degrees C)	рН	Specific Conductanc e (Units	Turbidity (NTU)	Remarks (odor, color, etc.)
	(Ft.)	(Gal.)	(iii bolow 100))		
1400		5	4.55	27.2	6.14	0,734	999	GRAYSILTY
1403		30	4.72	24.8	6.81	0.717	117	Clearing
1405		45	5.00	24.2	6 .80	0.700	49	clear
1407		5.5	5.01	24.1	6.79	0.701	48	Cleur
								NO HC DOORS
								STRONG RECHARGE
								WELL NEXT TO
							Annual 1990 (1990 (1990 (1990 (1990 (1990 (1990 (1990 (1990 (1990 (1990 (1990 (1990 (1990 (1990 (1990 (1990 (19	H20 BOPY
			į.					

Tetra Tech NUS. Inc. CERTIFICATE OF CONFORMANCE

Well Designation: [▲] 283 - MW 01	Site Geologist: DS
Site Name: BLO 283	Drilling Company: Preferres
Date Installed: 7 - 23 - 02	Driller: Doug
Project Name: Building 283	Project Number: 4195

Material	Brand/Description	Source/Supplier	Sample Collected ?	
Well Casing	2."	. ATLANTIC DRILLING Supply	100	
Well Screen	2"	· ·	1	
End Cap				
Drilling Fluid				
Drilling Fluid Additives				
Backfill Material	20/30 is			
Annular Filter Pack	20/30			
Bentonite Seal			·	
Annular Grout	Pontfall			
Surface Cement	QUILRET			
Protective Casing				
Paint				
Rod Lubricant				
Compressor Oil				
munitale of Cour				

To the best of my knowledge, I certify that the above described materials were used during installation of this monitoring well.

Signature of Site Geologist:

APPENDIX F MOBILE LABORATORY ANALYTICAL RESULTS

UNU - 31 600 30 30 - -

July 17, 2002

KB LABS, INC.

6821 Southwest Archer Road Gainesville, Florida 32608

> Telephone (352) 367-0073 Fax (352) 367-0074 Email: kblabs@gator.net

Mark Peterson Project Manager Tetra Tech NUS, Inc. 7018 A. C. Skinner Parkway, Suite 250 Jacksonville, Florida 32256

RE: NS Mayport Tank Site 283 (CTO 230) Final Data Report

Mayport, Florida

KB Labs Project # 02-057-1

Dear Mr. Peterson:

Enclosed is the final report of the on-site analysis performed by KB Labs, Inc. at the above referenced site. Samples were collected and analyzed on July 9 and 10, 2002. Included are a brief project narrative, data report narrative, tables listing quality control results, final analytical results, and sample chain-of-custody form. This information will also be sent electronically.

KB Labs is approved as a mobile laboratory for volatiles analyses and operates under an FDEP approved Comprehensive Quality Assurance Plan (CompQAP #980029 Revision 3). Unless otherwise stated in our CompQAP under method modifications, all data for the site referenced above were determined in accordance with published procedures under Test Methods for Evaluating Solid Waste (EPA SW-846, Update III Revised May 1997). Unless otherwise indicated on the quality control narrative accompanying the data report, the quality assurance and quality control procedures performed in conjunction with analysis of groundwater samples demonstrated that the reported data met our CompQAP requirements for accuracy and precision.

If you have any questions, please do not hesitate to call me or Kelly Bergdoll, President of KB Labs, at (352) 367-0073.

Sincerely,

KB Labs, Ing.

Todd Romero

Director of Operations

PROJECT NARRATIVE

Client:	Tetra Tech	Driller/Sampler:	Tetra Tech	Analyst:	Brad Weichert
Site:	Mayport Tank Site 283	KB Labs Project Manager:	Kelly Bergdoll	KB Labs Project #:	02-057-1
Onsite Dates:	07/09/02-07/10/02	Client Project Manager:	Mark Peterson	Matrix:	Water/Soil

Project Scope

On July 9 through 10, 2002, a total of 14 groundwater samples and 10 soil samples were collected at NS Mayport Tank Site 283 in Mayport, FL by Tetra Tech NUS and relinquished to KB Labs' Mobile Laboratory. The samples were analyzed on-site for MTBE, Benzene, Ethylbenzene, Toluene, Xylenes, Naphthalene, and 1-& 2-Methylnaphthalene.

Analytical Procedure

All water samples were analyzed using SW846 Method 5030/8260 for waters. Ten (10) milliliters (mL) of water were purged with helium and the volatile organic compounds (VOCs) were collected on a solid-phase adsorption trap. The adsorption trap was heated and back-purged with helium and the components were separated by capillary column gas chromatography and measured with a mass spectrometer (GC/MS) operated in the electron impact full-scan mode. The individual VOCs in the samples were measured against corresponding VOC standards.

The soil samples were analyzed using SW846 Method 5030/8260. One (1) gram (g) of soil sample was added to 10 mL of laboratory reagent water, heated and analyzed like a water sample as described above.

Unless otherwise indicated, soil data is calculated based on the matrix received (i.e. wet weight basis).

Analytical Results

Laboratory results were provided to the client on an as-completed or next-day basis. Final results of the on-site analyses are provided in a hardcopy report. The data produced and reported in the field has been reviewed and approved for this final report by the Director of Operations for KB Labs.

Quality Control (QC) Data

<u>Surrogate Recoveries</u> – Table 1 lists the daily analytical sequence and percent recovery results for surrogate compounds, which were added to all analyses. Four (4) surrogate compounds were added to each analysis in order to continually monitor general method performance.

MS/MSD/LCS Recoveries – Table 2 lists the percent recovery results for matrix spike samples and laboratory control spikes. A known amount of each target compound was added to selected field samples and to laboratory reagent water in order to monitor the performance of each of the target compounds in the actual matrix and in laboratory reagent water.

<u>Method Blanks</u> – Daily analysis of laboratory reagent water samples was performed in order to monitor the cleanliness of the analytical system.

Signature:

Title: Director of Operations

"KB Labs is a small, woman-owned business enterprise."

DATA REPORT NARRATIVE

Client:	Tetra Tech	Driller/Sampler:	Tetra Tech	Analyst:	Brad Weichert
Site:	Mayport Tank Site 283	KB Labs Project Manager:	Kelly Bergdoll	KB Labs Project #:	02-057-1
Onsite Dates:	07/09/02-07/10/02	Client Project Manager:	Mark Peterson	Matrix:	Water/Soil

- 1. All samples have been reviewed and, if required, updated in the Final Data Report for rounding and significant figures.
- 2. The Chain-of-Custody was corrected to reflect MPT-283-SB04-03.
- 3. Reporting limits are concurrent with the Detection Limit Requirements identified in the Statement of Work.

Signature:

Title: Director of Operations

Table 1: Analytical Run Sequence/Surrogate Percent Recoveries

Client: Tetra Tech	Driller/Sampler: Tetra Tech	Analyst: Brad Weichert
Site: Mayport Tank Site 283	KB Labs Project Manager: Kelly Bergdoll	KB Labs Project No: 02-057-1
On-site Dates:07/09/02- 07/10/02	Client Project Manager: Mark Peterson	Matrix: Water/Soil

Sample ID	Date of	Surrogate % Recovery			1	rogate Co			
•	Analysis	S1*	S2*	S3*	S4*	S1*	S2*	S3*	S4*
BLANK	07/09/02	103	103	96	94	Pass	Pass	Pass	Pass
1UG/L	07/09/02	103	111	96	101	Pass	Pass	Pass	Pass
5UG/L	07/09/02	92	90	102	98	Pass	Pass	Pass	Pass
20UG/L	07/09/02	86	98	98	99	Pass	Pass	Pass	Pass
100UG/L	07/09/02	107	114	104	97	Pass	Pass	Pass	Pass
BLANK	07/09/02	104	96	92	104	Pass	Pass	Pass	Pass
MPT-283-SB01-03	07/09/02	109	95	104	106	Pass	Pass	Pass	Pass
MPT-283-SB02-03	07/09/02	97	89	101	123	Pass	Pass	Pass	> UCL
MPT-283-SB03-03	07/09/02	107	97	104	103	Pass	Pass	Pass	Pass
MPT-283-SB04-03	07/09/02	103	88	95	106	Pass	Pass	Pass	Pass
MPT-283-SB05-03	07/09/02	108	106	98	110	Pass	Pass	Pass	Pass
MPT-283-SB06-2.6	07/09/02	127	111	106	120	> UCL	Pass	Pass	Pass
MPT-283-SB07-03	07/09/02	109	96	106	117	Pass	Pass	Pass	Pass
MPT-283-SB08-03	07/09/02	99	85	102	116	Pass	Pass	Pass	Pass
MPT-283-SB09-03	07/09/02	126	103	96	129	> UCL	Pass	Pass	> UCL
MPT-283-SB10-03	07/09/02	111	94	91	119	Pass	Pass	Pass	Pass
MPT-283-SB09-03MS	07/09/02	130	104	100	105	> UCL	Pass	Pass	Pass
MPT-283-SB09-03MSD	07/09/02	134	106	112	120	> UCL	Pass	Pass	Pass
CCS	07/09/02	108	90	93	111	Pass	Pass	Pass	Pass
CCS	07/10/02	120	107	101	117	Pass	Pass	Pass	Pass
REF	07/10/02	129	111	108	113	> UCL	Pass	Pass	Pass
BLANK	07/10/02	132	110	99	124	> UCL	Pass	Pass	> UCL
MPT-283-GW10-05	07/10/02	121	108	96	106	> UCL	Pass	Pass	Pass
MPT-283-GW01-06	07/10/02	142	108	91	123	> UCL	Pass	Pass	> UCL
MPT-283-GW08-06	07/10/02	111	84	96	118	Pass	Pass	Pass	Pass
MPT-283-GW02-06	07/10/02	123	93	100	117	> UCL	Pass	Pass	Pass
MPT-283-GW04-06	07/10/02	108	91	104	105	Pass	Pass	Pass	Pass
MPT-283-GW06-06	07/10/02	104	98	93	113	Pass	Pass	Pass	Pass
MPT-283-GW07-06	07/10/02	115	85	96	109	Pass	Pass	Pass	Pass
MPT-283-GW09-06	07/10/02	98	86	90	93	Pass	Pass	Pass	Pass
MPT-283-GW03-06	07/10/02	116	92	95	104	Pass	Pass	Pass	Pass
MPT-283-GW05-06	07/10/02	104	84	100	105	Pass	Pass	Pass	Pass
MPT-283-GW03-06MS	07/10/02	126	89	88	112	> UCL	Pass	Pass	Pass
MPT-283-GW03-06MSD	07/10/02	105	83	102	100	Pass	Pass	Pass	Pass

S4 = 4-Bromofluor obenzene

^{*}Surrogate Compounds: S1 = 1,2- Dichloroethane-D4

S2 = 1,2-Difluorobenzene

S3 = Toluene-D8

Table 1: Analytical Run Sequence/Surrogate Percent Recoveries

Client: Tetra Tech	Driller/Sampler: Tetra Tech	Analyst: Brad Weichert
Site: Mayport Tank Site 283	KB Labs Project Manager: Kelly Bergdoll	KB Labs Project No: 02-057-1
On-site Dates :07/09/02-07/10/02	Client Project Manager: Mark Peterson	Matrix: Water/Soil

Sample ID	Date of						Surrogate Control Limits: 80%(LCL) to 120%(UCL)			
	Analysis	S1*	S2*	S3*	S4*	S1*	S2*	S3*	S4*	
MPT-283-GW01-34	07/10/02	114	90	86	97	Pass	Pass	Pass	Pass	
MPT-283-GW01-24	07/10/02	106	95	89	115	Pass	Pass	Pass	Pass	
MPT-283-GW11-06	07/10/02	126	95	96	115	> UCL	Pass	Pass	Pass	
MPT-283-GW12-06	07/10/02	95	83	90	107	Pass	Pass	Pass	Pass	
CCS	07/10/02	125	93	99	118	> UCL	Pass	Pass	Pass	
Comments:	Although so	Although some surrogates may be out of the control percent recovery range (80% to 120%),								
	other suppo	other supporting QC, such as matrix spikes, matrix spike duplicates, method blanks, and								
	laboratory c	ontrol sar	nples, are	performed	by KB Lal	os to furthe	r validate i	reported da	ata.	

Signature:

Title: Director of Operations

Date:

*Surrogate Compounds:

S1 = 1,2- Dichloroethane-D4

S2 = 1,2-Difluorobenzene

S3 = Toluene-D8

S4 = 4-Bromofluorobenzene

Table 2: VOC Spike Compound Percent Recoveries

Client: Tetra Tech	Driller/Sampler: Tetra Tech	Analyst: Brad Weichert		
Site: Mayport Tank Site 283	KB Labs Project Manager: Kelly Bergdoll	KB Labs Project No.: 02-057-1		
On-site Dates: 07/09/02- 07/10/02	Client Project Manager: Mark Peterson	Matrix: Water/Soil		

Matrix Spike/Matrix Spike Duplicate (MS/MSD):

Samples: MPT-283-S		Date of Analysis: 7/9/2002								
MPT-283-S	B09-03M	SD								
Matrix Spike Compounds	Co	ntrol Lin	nits	Perce	ent Recov	veries	Control Limit Checks			
Matrix Spike Compounds	Lower	Upper	RPD	MS	MSD	RPD	MS MSD		RPD	
Methyl-t-Butyl-Ether	57	175	20	163	156	4	Pass	Pass	Pass	
2-Methyl-Naphthalene	44	140	20	59	67	12	Pass	Pass	Pass	
Benzene	63	135	20	114	112	2	Pass	Pass	Pass	
1-Methyl Naphthalene	53	125	20	62	74	19	Pass	Pass	Pass	
Toluene	66	130	20	108	102	6	Pass	Pass	Pass	
Naphthalene	0	233	20	85	101	17	Pass	Pass	Pass	
Ethylbenzene	64	136	20	112	108	4	Pass	Pass	Pass	
m,p-Xylene	55	143	20	110	118	7	Pass	Pass	Pass	
o-Xylene	62	136	20	122	109	12	Pass	Pass	Pass	

Note: Control Limits are based on semi-annual histrorical evaluation of mobile unit.

Samples: MPT-283-C	W03-06N	ИS		Date of Analysis: 7/10/2002								
MPT-283-G	W03-061	MSD										
Matrix Spiles Compounds	Co	ntrol Lin	nits	Perce	ent Recov	veries	Con	trol Limit Ch	ecks			
Matrix Spike Compounds	Lower Upper RPD		RPD	MS MSD RPD		MS MSD		RPD				
Methyl-t-Butyl Ether	57	175	20	111	82	29	Pass	Pass	> RPDL			
2-Methyl Naphthalene	44	140	20	99	130	27	Pass	Pass	> RPDL			
Benzene	63	135	20	87	85	3	Pass	Pass	Pass			
1-Methyl Naphthalene	53	125	20	98	140	36	Pass	> UCL	> RPDL			
Toluene	66	130	20	83	98	17	Pass	Pass	Pass			
Naphthalene	0	233	20	102	133	26	Pass	Pass	> RPDL			
Ethylbenzene	64	136	20	97	121	21	Pass	Pass	> RPDL			
m,p-Xylene	55	143	20	99	95	4	Pass	Pass	Pass			
o-Xylene	62	136	20	85	80	6	Pass	Pass	Pass			

Note: Control Limits are based on semi-annual histrorical evaluation of mobile unit.

Table 2: VOC Spike Compound Percent Recoveries

Client: Tetra Tech	Driller/Sampler: Tetra Tech	Analyst: Brad Weichert
Site: Mayport Tank Site 283	KB Labs Project Manager: Kelly Bergdoll	KB Labs Project No.: 02-057-1
On-site Dates: 07/09/02- 07/10/02	Client Project Manager: Mark Peterson	Matrix: Water/Soil

Laboratory Control Spikes (LCS):

Samples:	LCS 1		Date of Analysis: 7/10/2002										
Spiles Comp	da	Con	trol Li	mits	Percent Re	coveries	Control Limit Checks						
Spike Comp	ounus	Lower		Upper	LCS#1		LCS#1						
Benzene		70	to	130	116		Pass						
Toluene		70	to	130	98		Pass						
Naphthalene		70	to	130	79		Pass						
Ethylbenzene		70	to	130	115		Pass						
m,p-Xylene		70	to	130	110		Pass						
o-Xylene		70	to	130	108		Pass						

Note: Control limits are based on method guidance.

Title: Director of Operations

Signature:

Date: 7 18 02

KB LABS, INC. Final Data Report NS Mayport Tank Site 283 Mayport, FL July 9-10, 2002

Prepared for: Tetra Tech NUS

	Sample ID	Sample ID	Sample ID	Sample ID	Sample ID					
					Jan., p. 0 . 1					
Mobile Laboratory Services	MPT-283-SB01-03	MPT-283-SB02-03	MPT-283-SB03-03	MPT-283-SB04-03	MPT-283-SB05-03	MPT-283-SB06-2.5	MPT-283-SB07-03	MPT-283-SB08-03	MPT-283-SB09-03	MPT-283-SB10-03
Analysis Date:	7/9/2002	7/9/2002	7/9/2002	7/9/2002	7/9/2002	7/9/2002	7/9/2002	7/9/2002	7/9/2002	7/9/2002
Matrix:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Dilution:	1	1	1	1	1	1	1	1	1	1
MTBE	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200
Benzene	<0.007	<0.007	<0.007	<0.007	< 0.007	< 0.007	<0.007	<0.007	<0.007	<0.007
Toluene	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
Ethylbenzene	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	< 0.600	<0.600	< 0.600	<0.600
Total xylenes	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200
Naphthalene	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7
2-Methylnaphthalene	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2
1-Methylnaphthalene	<6.1	<6.1	<6.1	<6.1	<6.1	<6.1	<6.1	<6.1	<6.1	<6.1

Units are ug/L for waters and mg/Kg for soils.

KB LABS, INC. Final Data Report NS Mayport Tank Site 283 Mayport, FL July 9-10, 2002

Prepared for: Tetra Tech NUS

	Sample ID									
Mobile Laboratory Services	MPT-283-GW01-06	MPT-283-GW01-24	MPT-283-GW01-34	MPT-283-GW02-06	MPT-283-GW03-06	MPT-283-GW04-06	MPT-283-GW05-06	MPT-283-GW06-06	MPT-283-GW07-06	MPT-283-GW08-06
Analysis Date:	7/10/2002	7/10/2002	7/10/2002	7/10/2002	7/10/2002	7/10/2002	7/10/2002	7/10/2002	7/10/2002	7/10/2002
Matrix:	Water									
Dilution:	1	1	1	1	1	1	1	1	1	1
MTBE	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Benzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Toluene	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40
Ethylbenzene	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30
Total xylenes	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
Naphthalene	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
2-Methylnaphthalene	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
1-Methylnaphthalene	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20

Units are ug/L for waters and mg/Kg for soils.

KB LABS, INC. Final Data Report NS Mayport Tank Site 283 Mayport, FL July 9-10, 2002

Prepared for: Tetra Tech NUS

	Sample ID	Sample ID	Sample ID	Sample ID				
Mobile Laboratory Services	MPT-283-GW09-06	MPT-283-GW10-05	MPT-283-GW11-06	MPT-283-GW12-06				
Analysis Date:	7/10/2002	7/10/2002	7/10/2002	7/10/2002				
Matrix:	Water	Water	Water	Water				
Dilution:	1	1	1	1				
MTBE	<50	<50	<50	<50	-			
Benzene	<1	<1	<1	<1			The section of the se	ACCUPATION AND ACCUPATION AND ACCUPATION ASSESSMENT ASS
Toluene	<40	<40	<40	<40				
Ethylbenzene	<30	<30	<30	<30				
Total xylenes	<20	<20	<20	<20				
Naphthalene	<20	<20	<20	<20				
2-Methylnaphthalene	<20	<20	<20	<20				
1-Methylnaphthalene	<20	<20	<20	<20				

Units are ug/L for waters and mg/Kg for soils.

6821 SW Archer Road Gainesville, FL 32608 TEL (352) 367-0073 FAX (352) 367-0074

CHAIN-OF-CUST Y RECORD

MOBILE UNIT #

Services **CLIENT NAME** PROJECT NAME & ADDRESS IDENTIFY PARAMETERS NUMBER OF CONTAINERS PRESERVATION Chilled DESIRED Mayport NUS
CONTACT PERSON HCL Other (see Remarks) SAMPLE MATRIX NO. OF VOLATILES BATCH # (Lab Use Only) David THNUS COMP. GRAB DATE DATE TIME SAMPLE FIELD ID.\ NUMBER STATION LOCATION / No. SAMPLED SAMPLED REC'D REC'D COMMENT 47/9/02 ANPT-283-5801-03 7/9/02 1122 1122 1128 SB02-03 SB 03-03 1146 1301 1701 1329 SB05-03 1324 1341 SB06-25 1341 SB07 -03 1406 1406 SB08-03 1428 1428 509-03 1570 1510 1545 1540 aned Containers Date / Time Received by: (Signature) Date / Time **Remarks and Observations** Relinquished by: (Signature) Received (Signature)

CHAIN-OF-CUST Y RECORD

6821 SW Archer Road Gainesville, FL 32608 TEL (352) 367-0073 FAX (352) 367-0074

MOBILE UNIT #

Services	.					-			- ₁						
CLIENT NAME	PROJECT	NAME & ADI	DRES	SS					l RS	PAR	ENTIF'	ERS	_	$-\!\!\!/-$	/ PRESERVATION
T+1/U5 SAMPLERS	May	PERSON	1	1/4	15			X X	CONTAINERS	١,	ESIREI AND NO. OF NTAINE	/	/	/	C Chilled H HCL Ot Other (see Remarks)
SAMPLERS				-			BATCH # (Lab Use Only)	MAT	Ö	COR	VIAINE		, /		
THMUS	Davi	id	т					SAMPLE MATRIX	3 OF C				/	/ ,	
SAMPLE FIELD ID.\ NUMBER	DATE SAMPLED	TIME SAMPLED	COMP.	GRAB	DATE REC'D	TIME REC'D	STATION LOCATION / No.	SAI	NUMBER OF		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	STILES.			COMMENT
MPT-283-67W10-05	1/10/02	0925		-	1/10/02	0925		W	2	_ =					
6W01-06	/ '	0935			,, , , ,	0135									
61W02-06		0945				0945									
6w03-06		0950				0950									
6 WOU -06		0955				0955		The second second							
Gwes06		1010				1010				NA CONTRACTOR OF THE					
61406-06		1020				1020									
GW07-06		030				1030				on againer parameter					
6,W05-06		1045				1045									
6 NO9-06		1100				11000									
GWO1 -34		1515				1511									
62W01-24		1540				15210	,	O CONTRACTOR OF THE CONTRACTOR							
Crw11-06		(555				1555									
GW12-06		1650				1650		V	14	1					
1			NAMES AND POST OFFICE ASSESSMENT OF THE POST OF THE PO	and the same of th			AND THE PROPERTY OF THE PROPER			100 Marie Ma		ON THE PARTY OF TH		age of any consequent of the billion	
Preclear of Containers Relinguished by (Sounding)		Date / Time	Red	ceived I	by: <i>(Signatu</i>	re)	Date / Tim	ne	Rer	nark	s ar	nd Ol	bserv	ation	ıs
MANULLAND	7	110102	-					1							
Relinquished by: (Signature)	.6	Date / Time	Red	ceived I	by: (Signatu	re)	Date / Tim	ne/							
					HUL	lla	her 7/10/8	12							
Matrix Types S Soil SW Si	ırface Water	GW Gro	und M	Vator	SG Soi	LGac									-

APPENDIX G FIXED-BASE LABORATORY ANALYTICAL RESULTS

Tetra Tech NUS

INTERNAL CORRESPONDENCE

TO:

M. PETERSON

DATE:

AUGUST 29, 2002

FROM:

ETHAN G. LEE

COPIES:

DV FILE

SUBJECT:

INORGANIC DATA VALIDATION - LEAD

NS MAYPORT - CTO 230

SAMPLE DELIVERY GROUP (SDG) - F14055

SAMPLES:

2/AQUEOUS/

MPT-283-EQUIP-01

MPT-283-MW01S-01

Overview

The sample set for NS Mayport, CTO 230, SDG F14055, consists of one (1) aqueous environmental sample and one (1) equipment blank.

The samples were analyzed for lead. The samples were collected by Tetra Tech NUS July 30, 2002 and analyzed by Accutest Laboratories Southeast, Inc. Lead analyses were conducted using method SW846 6010B.

Metals analyses were conducted using Inductively Coupled Plasma (ICP) methodologies.

These data were evaluated based on the following parameters:

- * Data Completeness
- Holding Times
- Calibration Recoveries
 - Laboratory Blank Analyses
- Detection Limits
- * All quality control criteria were met for this parameter.

AUG 3 0 2002 TETRA TECH NUS JACKSONVILLE FL

Laboratory Blank Analyses

The following contaminant was detected in the laboratory method/preparation blanks at the following maximum concentration:

	<u>Maximum</u>	<u>Action</u>
<u>Analyte</u>	Concentration	Level
Lead ⁽¹⁾	3.7 ug/L	18.5 ug/L

⁽¹⁾ Maximum concentration present in laboratory method blank.

An action level of 5X the maximum concentration was used to evaluate the sample data for blank contamination. Sample aliquot and dilution factors, if applicable, were taken into consideration when evaluating for blank contamination. Positive results less than the action level for lead were qualified as nondetected (U) as a result of blank contamination. The field blank was not qualified for method blank contamination.

TO: PETERSON, M. – PAGE 2

DATE: AUGUST 29, 2002

Executive Summary

Laboratory Performance: Lead was present in the laboratory method/preparation blanks.

Other Factors Affecting Data Quality: None.

The data for these analyses were reviewed with reference to the "National Functional Guidelines for Inorganic Review", February 1994 and the NFESC document entitled "Navy IRCDQM" (September 1999).

The text of this report has been formulated to address only those problem areas affecting data quality.

"I attest that the data referenced herein were validated according to the agreed upon validation criteria as specified in the NFESC Guidelines and the Quality Assurance Project Plan (QAPP)."

Tetra Tech NUS Ethan G. Lee

Fetra Tech NUS

Environmental Scientist

Joseph A. Samchuck Quality Assurance Officer

.

Attachments:

- 1. Appendix A Qualified Analytical Results
- 2. Appendix B Results as reported by the Laboratory
- 3. Appendix C Support Documentation

APPENDIX A QUALIFIED ANALYTICAL RESULTS

Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration (i.e., % RSDs, %Ds, ICVs, CCVs, RPDs, RRFs, etc.) Noncompliance

D = MS/MSD Noncompliance

E = LCS/LCSD Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = GFAA PDS - GFAA MSA's r < 0.995

K = ICP Interference - include ICSAB % R's

L = Instrument Calibration Range Exceedance

M = Sample Preservation

N = Internal Standard Noncompliance

N01 = Internal Standard Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (i.e., base-time drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = Pest/PCD% between columns for positive results

V = Non-linear calibrations, tuning r < 0.995 (correlation coefficient)

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 sigma deviation is less than sample activity

PROJ_NO:

4195 SDG: F14055 MEDIA: WATER DATA FRACTION: M

nsample	MPT-283-EQUIP-01
samp_date	7/30/2002
lab_id	F14055-2
qc_type	NM
units	UG/L
Pct_Solids	0
DUP_OF:	

nsample	MPT-283-MW01S-01
samp_date	7/30/2002
lab_id	F14055-1
qc_type	NM
units	UG/L
Pct_Solids	0
DUP_OF:	

Parameter	Result	ValQual	QualCode
LEAD	1.6	U	А

Parameter	Result	ValQual	QualCode	
LEAD	2.7	U	А	

INTERNAL CORRESPONDENCE

TO:

M. PETERSON

DATE:

NOVEMBER 13, 2002

FROM:

SETH C. STAFFEN

COPIES:

DV FILE

SUBJECT:

ORGANIC DATA VALIDATION - PAH

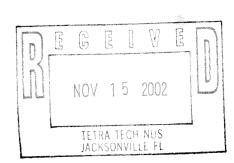
CTO 230, NS MAYPORT

SDG: F14900

SAMPLES:

1/AQUEOUS/PAH

MPT-283-EQ BLK


4/SOIL BORINGS/PAH

MPT-283-SB-13-SO-3

MPT-283-SB-14-SO-3

MPT-283-SB-15-SO-3

MPT-283-SB-16-SO-3

OVERVIEW

The sample set for CTO 230, SDG F14900; Naval Station (NS) Mayport consists of one (1) equipment blank and four (4) soil boring environmental samples. The samples were analyzed for polynuclear hydrocarbons: benzo(a)anthracene, aromatic benzo(a)pyrene. benzo(b)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene. No field duplicate pairs were included in this SDG.

The samples were collected on October 03, 2002 by Tetra Tech NUS, Inc. and analyzed by Accutest Laboratories. All analyses were performed in accordance with Naval Facilities Engineering Service Center (NFESC) Quality Assurance/Quality Control (QA/QC) criteria and analyzed according to SW 846 Method 8310 analytical and reporting protocol. The data in this SDG was validated with regard to the following parameters:

- Data Completeness
 - **Holding Times**
 - Initial/Continuing Calibrations
- Laboratory Method and Field Quality Control Blank Results
 - **Detection Limits**

The symbol (*) indicates that all quality control criteria were met for this parameter. Problems affecting data quality are discussed below; documentation supporting these findings is presented in Appendix C. Qualified analytical results are presented in Appendix A.

PAH FRACTION

The initial calibration on 10/17/02 contained a relative response factor (RRF) that exceeded the 30% quality control limit for anthracene. No qualification action was taken because the other column was compliant.

MEMO TO:

M. PETERSON

DATE:

11/13/02 - PAGE 2

ADDITIONAL COMMENTS

Positive results < Reporting Limit (RL) were qualified as estimated, J, due to uncertainty near the detection limit.

EXECUTIVE SUMMARY

Laboratory Performance: Initial calibration criteria was not met for anthracene.

Other Factors Affecting Data Quality: None.

The data for these analyses were reviewed with reference to the EPA Functional Guidelines for Organic Data Validation (October 1999) and the NFESC guidelines "Navy IRCDQM" (September 1999). The text of this report has been formulated to address only those problem areas affecting data quality.

"I attest that the data referenced herein were validated according to the agreed upon validation criteria as specified in the NFESC guidelines and the Quality Assurance Project Plan (QAPP)."

Seth C. Staffen

Environmental Scientist/Data Validator

Tetra Tech NUS

loseph A. Samchuck

Data Validation Quality Assurance Officer

TetraTech NUS

Attachments:

- 1. Appendix A Qualified Analytical Results
- 2. Appendix B Results as Reported by the Laboratory
- 3. Appendix C Support Documentation

APPENDIX A QUALIFIED ANALYTICAL RESULTS

Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration (i.e., % RSDs, %Ds, ICVs, CCVs, RPDs, RRFs, etc.) Noncompliance

D = MS/MSD Noncompliance

E = LCS/LCSD Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = GFAA PDS - GFAA MSA's r < 0.995

K = ICP Interference - include ICSAB % R's

L = Instrument Calibration Range Exceedance

M = Sample Preservation

N = Internal Standard Noncompliance

N01 = Internal Standard Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (i.e., base-time drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = Pest/PCD% between columns for positive results

V = Non-linear calibrations, tuning r < 0.995 (correlation coefficient)

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 sigma deviation is less than sample activity

PROJ_NO: 4195

SDG: F14900 MEDIA: SOIL DATA FRACTION: PAH

nsample	MPT-283-SB-13-SO-3
samp_date	10/3/2002
lab_id	F14900-1
qc_type	NM
units	UG/KG
Pct_Solids	85.3
DUP_OF:	

200	00000
10/3/200	2
F14900-	1
NM	
UG/KG	
85.3	
	Val Q

nsample	MPT-283-SB-14-SO-3
samp_date	10/3/2002
lab_id	F14900-2
qc_type	NM
units	UG/KG
Pct_Solids	80.4
DUP_OF:	

nsample	MPT-283-SB-15-SO-3
samp_date	10/3/2002
lab_id	F14900-3
qc_type	NM
units	UG/KG
Pct_Solids	84.4
DUP_OF:	

Parameter	Result	Val Qual	Qual Code
BENZO(A)ANTHRACENE	3990		
BENZO(A)PYRENE	2340	*	
BENZO(B)FLUORANTHENE	1630		
DIBENZO(A,H)ANTHRACENE	408		
INDENO(1,2,3-CD)PYRENE	1700		

Parameter	Result	Val Qual	Qual Code
BENZO(A)ANTHRACENE	918		
BENZO(A)PYRENE	626		
BENZO(B)FLUORANTHENE	427		
DIBENZO(A,H)ANTHRACENE	111		
INDENO(1,2,3-CD)PYRENE	454		

Parameter	Result	Val Qual	Qual Code
BENZO(A)ANTHRACENE	400	U	
BENZO(A)PYRENE	81	U	
BENZO(B)FLUORANTHENE	81	U	
DIBENZO(A,H)ANTHRACENE	81	U	
INDENO(1,2,3-CD)PYRENE	81	U	

PROJ_NO: 4195

SDG: F14900 MEDIA: SOIL DATA FRACTION: PAH

nsample samp_date MPT-283-SB-16-SO-3

10/3/2002 F14900-4

lab_id

qc_type

NM

units Pct_Solids UG/KG

81.3

DUP_OF:

Parameter	Result	Val Qual	Qual Code
BENZO(A)ANTHRACENE	3010		
BENZO(A)PYRENE	1780		
BENZO(B)FLUORANTHENE	1220		
DIBENZO(A,H)ANTHRACENE	331	J	Р
INDENO(1,2,3-CD)PYRENE	1210		

PROJ_NO: 4195

SDG: F14900 MEDIA: WATER DATA FRACTION: PAH

nsample

MPT-283-EQ BLK

samp_date

10/3/2002

lab_id

F14900-5

qc_type

NM

units

UG/L

Pct_Solids DUP_OF:

0

Parameter	Result	Val Qual	Qual Code
BENZO(A)ANTHRACENE	0.21	U	
BENZO(A)PYRENE	0.21	U	
BENZO(B)FLUORANTHENE	0.21	U	
DIBENZO(A,H)ANTHRACENE	0.21	U	
INDENO(1,2,3-CD)PYRENE	0.21	U	

Technical I	eport for
Tetra Tech,	NUS
NAS Mayport	·CTO230
N4195-P2293	SD), Tank 283
Accutest Job	Jumber: F13797
Report to:	
notorsonm@tt	us com
petersonm@tt	us.com
,	

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Total number of pages in report: 55

Harry Behzadi, Ph.D. Laboratory Director

Certification: Florida DOH E83510

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories.

Sample Summary

Tetra Tech, NUS

Job No:

F13797

NAS Mayport-CTO230

Project No: N4195-P2293(SD), Tank 283

Sample	Collected		Matrix		ix	Client
Number	Date	Time By	Received	Code	Туре	Sample ID
F13797-1	07/10/02	08:15 MD	07/11/02	SO	Soil	MPT-283-SB10-03

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

Client Sample ID:	MPT-283-SB10-03	
Lab Sample ID:	F13797-1	Date Sa
l		n . n

Matrix: Method: SO - Soil SW846 8260B Date Received: 07/11/02 Percent Solids: 87.4

Sampled: 07/10/02

Project:

NAS Mayport-CTO230

Run #1 G0017164.D 1 07/18/02 KW n/a n/a VG558		File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch	1
IXIII #L	Run #1 Run #2	G0017164.D	1	07/18/02	KW	n/a	n/a	VG558	

	Initial Weight	
Run #1	4.93 g	
Run #2		

Purgeable Aromatics, MTBE

CAS No.	Compound	Result	RL	Units Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	5.8 5.8 5.8	ug/kg ug/kg ug/kg ug/kg
1634-04-4 CAS No.	Methyl Tert Butyl Ether Surrogate Recoveries	ND Run# 1	5.8 Run# 2	ug/kg Limits
1868-53-7 2037-26-5 460-00-4 17060-07-0	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene 1.2-Dichloroethane-D4	102% 102% 113% 116%		75-125% 75-125% 72-137% 68-125%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Run #2

Report of Analysis

Client Sam Lab Sampl Matrix: Method: Project:	SO - S EPA 8	7-1 oil	346 3550B		•	ed: 07/10/02 red: 07/11/02 ids: 87.4	
Run #1 a	File ID AA011338.D	DF 5	Analyzed 07/18/02	By MRE	Prep Date 07/16/02	Prep Batch OP5492	Analytical Batch GAA526

	Initial Weight	Final Volume	
Run #1	30.0 g	5.0 ml	
Run #2	-		

Polynuclear Aromatic Hydrocarbons

CAS No.	Compound	Result	RL	Units Q
83-32-9	Acenaphthene	ND	3800	ug/kg
208-96-8	Acenaphthylene	ND	3800	ug/kg
120-12-7	Anthracene	1740	1900	ug/kg J
56-55-3	Benzo(a)anthracene	3490	1900	ug/kg
50-32-8	Benzo(a)pyrene	3370	380	ug/kg
205-99-2	Benzo(b)fluoranthene	2390	380	ug/kg
191-24-2	Benzo(g,h,i)perylene	2070	380	ug/kg
207-08-9	Benzo(k)fluoranthene	1670	380	ug/kg
218-01-9	Chrysene	4170	1900	ug/kg
53-70-3	Dibenzo(a,h)anthracene	854	380	ug/kg
206-44-0	Fluoranthene	13200	1900	ug/kg
86-73-7	Fluorene	ND	1900	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene	1880	380	ug/kg
91-20-3	Naphthalene	ND	1900	ug/kg
90-12-0	1-Methylnaphthalene	ND	1900	ug/kg
91-57-6	2-Methylnaphthalene	ND	1900	ug/kg
85-01-8	Phenanthrene	11500	1900	ug/kg
129-00-0	Pyrene	8310	1900	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
84-15-1	o-Terphenyl	66%		37-158%
92-94-4	p-Terphenyl	151% ^b		59-149%

⁽a) All hits confirmed by spectral match using a diode array detector.

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

⁽b) Outside control limits due to matrix interference.

84-15-1

o-Terphenyl

Client Sample ID: MPT-283-SB10-03 Lab Sample ID: F13797-1 Matrix: SO - Soil Method: FLORIDA-PRO SV Project: NAS Mayport-CTO2		SW846 3550B		Date Samp Date Receiv Percent Sol	ved: 07/11/02			
Run #1 Run #2	File ID OP222		DF 1	Analyzed 07/23/02	By SKW	Prep Date 07/22/02	Prep Batch OP5525	Analytical Batch GOP809
Run #1 Run #2	Initial 30.1 g	Weight	Final Vo 1.0 ml	lume		·		
CAS No.	Comp	ound		Result	RL	Units Q		
	TPH ((C8-C40)		56.9	9.5	mg/kg		
CAS No.	Surro	gate Rec	overies	Run# 1	Run# 2	Limits		

66-130%

96%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N =Indicates presumptive evidence of a compound

CLIENT : Tetra Tech NUS REPORT # : JAX31729

ADDRESS: 8640 Philips Highway DATE SUBMITTED: May 15, 2003

Suite 16 DATE REPORTED : June 1, 2003

Jacksonville, FL 32256

PAGE 1 OF 13

ATTENTION: Mr. M. Peterson

SAMPLE IDENTIFICATION

Samples submitted and identified by client as:

REFERENCE: 4195

Site 283

```
#1
    - MPT-283-SB34(1) @ 10:15 (05/15/03)
#2
     - MPT-283-SB34(3) @ 10:25 (05/15/03)
#3
     - MPT-283-SB35(1) @ 10:30 (05/15/03)
#4
    - MPT-283-SB35(3) @ 10:35 (05/15/03)
#5
    - MPT-283-SB36(1) @ 10:45 (05/15/03)
#6
    - MPT-283-SB36(3) @ 10:50 (05/15/03)
#7
     - MPT-283-SB37(1) @ 11:50 (05/15/03)
#8
    - MPT-283-SB37(3) @ 11:55 (05/15/03)
#9
    - MPT-283-SB38(1) @ 12:00 (05/15/03)
#10 - MPT-283-SB38(3) @ 12:05 (05/15/03)
#11 - MPT-283-SB39(1) @ 12:15 (05/15/03)
#12 - MPT-283-SB39(3) @ 12:20 (05/15/03)
#13
    - EQUIP 1
                       @ 10:00 (05/15/03)
#14
     - EQUIP 2
                       @ 12:30 (05/15/03)
     - MPT-283-SB28(1) @ 13:00 (05/18/03)
#15
```

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. This data has been produced in accordance with NELAC Standards (July, 1999). This report shall not be reproduced except in full, without the written approval of the laboratory. Results for these procedures apply only to the samples as submitted.

Note: Analytical values are reported on a dry weight basis.

PROJECT	MANAGER				
		Saott	ח	Martin	

REPORT # : JAX31729
DATE REPORTED: June 1, 2003

REFERENCE : 4195

PROJECT NAME : Site 283

PAGE 2 OF 13

EPA METHOD 8270 - PAH Compounds by SI	I M	MPT-283-SB34(1)	MPT-283-SB34(3)	Units
Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Chrysene Benzo(a) anthracene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Indeno(1,2,3-cd) pyr Dibenzo(a,h) anthrace Benzo(g,h,i) perylene	ne ne cene	3.5 U	3.8 U	ug/Kg
Surrogate: p-Terphenyl Date Prepared Date Analyzed		% RECOV 76 05/16/03 05/21/03 00:11	% RECOV 72 05/16/03 05/21/03 00:32	LIMITS 19-162
MISCELLANEOUS	METHOD	MPT-283-SB34(1)	MPT-283-SB34(3)	Units
Percent Solids Date Prepared Date Analyzed	SM2540G	95 05/15/03 21:30 05/16/03 14:30	87 05/15/03 21:30 05/16/03 14:30	96

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JAX31729
DATE REPORTED: June 1, 2003

REFERENCE: 4195

PROJECT NAME : Site 283

PAGE 3 OF 13

EPA METHOD 8270 - PAH Compounds by SI	<u>. M</u>	MPT-283-SB35(1)	MPT-283-SB35(3)	<u>Units</u>
Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Chrysene Benzo(a) anthracene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Indeno(1,2,3-cd)pyr Dibenzo(a,h) anthrace Benzo(g,h,i) peryler	ne ne cene	3.5 U 3.5 U 3.5 U 3.5 U 3.5 U 3.5 U 14 5.0 27 20 17 15 32 17 26 26 3.5 U	3.9 U 3.9 U 3.9 U 3.9 U 3.9 U 3.9 U 8.9 5.0 19 14 9.6 9.3 16 9.3 16 3.9 U 18	ug/Kg
Surrogate: p-Terphenyl Date Prepared Date Analyzed		% RECOV 72 05/16/03 05/21/03 00:54	% RECOV 73 05/16/03 05/21/03 01:15	<u>LIMITS</u> 19-162
MISCELLANEOUS	METHOD	MPT-283-SB35(1)	MPT-283-SB35(3)	<u>Units</u>
Percent Solids Date Prepared Date Analyzed	SM2540G	93 05/15/03 21:30 05/16/03 14:30	85 05/15/03 21:30 05/16/03 14:30	00

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JAX31729 DATE REPORTED: June 1, 2003

REFERENCE: 4195 PROJECT NAME : Site 283

PAGE 4 OF 13

EPA METHOD 8270 - PAH Compounds by SI	<u>M</u>	MPT-283-SB36(1)	MPT-283-SB36(3)	<u>Units</u>
Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Chrysene Benzo(a) anthracene Benzo(b) fluoranthen Benzo(b) fluoranthen Benzo(a) pyrene Indeno(1,2,3-cd) pyr Dibenzo(a,h) anthrace Benzo(g,h,i) perylen	e e ene ene	3.4 U 5.8 4.8 3.4 U 5.8 4.8 3.4 U 5.0 3.4 U 8.2 8.5 3.4 U	3.5 U 3.5 U	ug/Kg
<pre>Surrogate: p-Terphenyl Date Prepared Date Analyzed</pre>		<pre>% RECOV 58 05/16/03 05/21/03 01:37</pre>	% RECOV 59 05/16/03 05/21/03 01:59	LIMITS 19-162
MISCELLANEOUS	METHOD	MPT-283-SB36(1)	MPT-283-SB36(3)	<u>Units</u>
Percent Solids Date Prepared Date Analyzed	SM2540G	96 05/15/03 21:30 05/16/03 14:30	93 05/15/03 21:30 05/16/03 14:30	ò

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JAX31729
DATE REPORTED: June 1, 2003

REFERENCE: 4195

PROJECT NAME : Site 283

PAGE 5 OF 13

EPA METHOD 8270 - PAH Compounds by SI	<u>M</u>	MPT-283-SB37(1)	MPT-283-SB37(3)	Units
Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Chrysene Benzo(a) anthracene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Indeno(1,2,3-cd) pyr Dibenzo(a,h) anthrace Benzo(g,h,i) perylene	ie ie cene	3.4 U 3.4 U 3.4 U 3.7 3.4 U 3.4 U 3.4 U 17 6.7 39 30 23 21 45 26 34 36 3.4 U 38	3.6 U 3.6 U 3.6 U 3.6 U 3.6 U 15 6.2 32 24 18 15 31 21 25 24	ug/Kg
Surrogate: p-Terphenyl Date Prepared Date Analyzed		<pre>% RECOV 57 05/16/03 05/21/03 02:20</pre>	% RECOV 56 05/16/03 05/21/03 02:42	<u>LIMITS</u> 19-162
MISCELLANEOUS	METHOD	MPT-283-SB37(1)	MPT-283-SB37(3)	Units
Percent Solids Date Prepared Date Analyzed	SM2540G	98 05/15/03 21:30 05/16/03 14:30	91 05/15/03 21:30 05/16/03 14:30	90

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JAX31729
DATE REPORTED: June 1, 2003

REFERENCE : 4195

PROJECT NAME : Site 283

PAGE 6 OF 13

EPA METHOD 8270 - PAH Compounds by SI	<u>M</u>	MPT-283-SB38(1)	MPT-283-SB38(3)	Units
Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Chrysene Benzo(a) anthracene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(a) pyrene Indeno(1,2,3-cd) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene		3.4 U	3.9 U	ug/Kg
Surrogate: p-Terphenyl Date Prepared Date Analyzed		<pre>% RECOV 39 05/16/03 05/21/03 03:03</pre>	<pre>% RECOV 57 05/16/03 05/21/03 03:25</pre>	LIMITS 19-162
MISCELLANEOUS	METHOD	MPT-283-SB38(1)	MPT-283-SB38(3)	<u>Units</u>
Percent Solids Date Prepared Date Analyzed	SM2540G	96 05/15/03 21:30 05/16/03 14:30	84 05/15/03 21:30 05/16/03 14:30	ò

 $^{{\}tt U} = {\tt Compound}$ was analyzed for but not detected to the level shown.

REPORT # : JAX31729
DATE REPORTED: June 1, 2003

REFERENCE: 4195

PROJECT NAME : Site 283

PAGE 7 OF 13

EPA METHOD 8270 - PAH Compounds by SI	<u>M</u>	MPT-283-SB39(1)	MPT-283-SB39(3)	Units
Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Chrysene Benzo(a) anthracene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Indeno(1,2,3-cd) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene		5.0 5.0 3.7 4.0 17 12 180 26 220 160 110 99 200 78 120 110 3.4 U 110	3.8 U 3.8 U 4.2 14 15 170 30 210 140 98 85 140 88 110 88 3.8 U 96	ug/Kg
Surrogate: p-Terphenyl Date Prepared Date Analyzed		% RECOV 53 05/16/03 05/21/03 03:46	% RECOV 87 05/16/03 05/21/03 04:08	<u>LIMITS</u> 19-162
MISCELLANEOUS	METHOD	MPT-283-SB39(1)	MPT-283-SB39(3)	Units
Percent Solids Date Prepared Date Analyzed	SM2540G	98 05/15/03 21:30 05/16/03 14:30	86 05/15/03 21:30 05/16/03 14:30	%

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JAX31729
DATE REPORTED: June 1, 2003

REFERENCE: 4195

PROJECT NAME : Site 283

PAGE 8 OF 13

EPA METHOD 8270 -			
PAH Compounds by SIM	EQUIP 1	EQUIP 2	<u>Units</u>
Naphthalene	0.10 U	0.10 U	ug/L
2-Methylnaphthalene	0.10 U	0.10 U	ug/L
1-Methylnaphthalene	0.10 U	0.10 U	ug/L
Acenaphthylene	0.10 U	0.10 U	ug/L
Acenaphthene	0.10 U	0.10 U	ug/L
Fluorene	0.10 U	0.10 U	ug/L
Phenanthrene	0.10 U	0.10 U	ug/L
Anthracene	0.10 U	0.10 U	ug/L
Fluoranthene	0.10 U	0.10 U /	ug/L
Pyrene	0.10 U	0.10 U	ug/L
Chrysene	0.10 U	0.10 U	ug/L
Benzo(a)anthracene	0.10 U	0.10 U	ug/L
Benzo(b)fluoranthene	0.10 U	0.10 U	ug/L
Benzo(k)fluoranthene	0.10 U	0.10 U	ug/L
Benzo(a)pyrene	0.10 U	0.10 U	ug/L
Indeno(1,2,3-cd)pyrene	0.10 U	0.10 U	ug/L
Dibenzo(a,h)anthracene	0.10 U	0.10 U	ug/L
Benzo(g,h,i)perylene	0.10 U	0.10 U	ug/L
Surrogate:	% RECOV	% RECOV	LIMITS
p-Terphenyl	66	64	20-148
Date Prepared	05/19/03	05/19/03	
Date Analyzed	05/20/03 19:08	05/20/03 19:29	

REPORT # : JAX31729
DATE REPORTED: June 1, 2003

REFERENCE: 4195

PROJECT NAME : Site 283

PAGE 9 OF 13

EPA METHOD 8270 - PAH Compounds by SIM	LAB BLANK	<u>Units</u>
Naphthalene	0.10 U	ug/L
2-Methylnaphthalene	0.10 U	ug/L
1-Methylnaphthalene	0.10 U	ug/L
Acenaphthylene	0.10 U	ug/L
Acenaphthene	0.10 U	ug/L
Fluorene	0.10 U	ug/L
Phenanthrene	0.10 U	ug/L
Anthracene	0.10 U	ug/L
Fluoranthene	0.10 U	ug/L
Pyrene	0.10 U	ug/L
Chrysene	0.10 U	ug/L
Benzo(a)anthracene	0.10 U	ug/L
Benzo(b)fluoranthene	0.10 U	ug/L
Benzo(k)fluoranthene	0.10 U	ug/L
Benzo(a)pyrene	0.10 U	ug/L
Indeno(1,2,3-cd)pyrene	0.10 U	ug/L
Dibenzo(a,h)anthracene	0.10 U	ug/L
Benzo(g,h,i)perylene	0.10 U	ug/L
Surrogate:	% RECOV	LIMITS
p-Terphenyl	66	20-148
Date Prepared	05/19/03	
Date Analyzed	05/20/03 17:20	

REPORT # : JAX31729 DATE REPORTED: June 1, 2003

REFERENCE : 4195
PROJECT NAME : Site 283

PAGE 10 OF 13

RESULTS OF ANALYSIS

MPT-283-SB28(1)	LAB BLANK	Units
3 / II	3 3 11	ug/Kg
		ug/Kg ug/Kg
		ug/Kg ug/Kg
		ug/Kg
140	3.3 U	ug/Kg
100	3.3 U	ug/Kg
67	3.3 U	ug/Kg
70	3.3 U	ug/Kg
79	3.3 U	ug/Kg
48	3.3 U	ug/Kg
67	3.3 U	ug/Kg
38	3.3 U	ug/Kg
3.4 U	3.3 U	ug/Kg
41	3.3 U	ug/Kg
% RECOV	% RECOV	LIMITS
93	63	19-162
·	·	
05/22/03 14:22	05/20/03 22:44	
	3.4 U 3.4 U 3.4 U 7.6 7.2 79 18 140 100 67 70 79 48 67 38 3.4 U 41	3.4 U 3.3 U 3.4 U 3.3 U 3.4 U 3.3 U 3.4 U 3.3 U 7.6 3.3 U 7.2 3.3 U 79 3.3 U 18 3.3 U 140 3.3 U 3.3 U 3.4 U 3.3 U

MISCELLANEOUS	METHOD	MPT-283-SB28(1)	LAB BLANK	<u>Units</u>
Percent Solids Date Prepared Date Analyzed	SM2540G	96 05/23/03 11:00 05/23/03 19:00	NA	%

 ${\tt NA} = {\tt Analysis}$ not applicable for this sample. ${\tt U} = {\tt Compound}$ was analyzed for but not detected to the level shown.

REPORT # : JAX31729
DATE REPORTED: June 1, 2003

REFERENCE: 4195

PROJECT NAME : Site 283

PAGE 11 OF 13

EPA METHOD 8270 - PAH Compounds by SIM	LAB BLANK	<u>Units</u>
Naphthalene 2-Methylnaphthalene	3.3 U 3.3 U	ug/Kg ug/Kg
1-Methylnaphthalene	3.3 U	ug/Kg
Acenaphthylene	3.3 U	ug/Kg
Acenaphthene	3.3 U	ug/Kg
Fluorene	3.3 U	ug/Kg
Phenanthrene	3.3 U	ug/Kg
Anthracene	3.3 U	ug/Kg
Fluoranthene	3.3 U	ug/Kg
Pyrene Chrysene	3.3 U 3.3 U	ug/Kg ug/Kg
Benzo(a) anthracene	3.3 U	ug/Kg ug/Kg
Benzo(b) fluoranthene	3.3 U	ug/Kg ug/Kg
Benzo(k) fluoranthene	3.3 U	ug/Kg
Benzo(a)pyrene	3.3 U	ug/Kg
Indeno(1,2,3-cd)pyrene	3.3 U	ug/Kg
Dibenzo(a,h)anthracene	3.3 U	ug/Kg
Benzo(g,h,i)perylene	3.3 U	ug/Kg
Surrogate:	% RECOV_	LIMITS
p-Terphenyl	79	19-162
Date Prepared	05/21/03	
Date Analyzed	05/22/03 13:39	

REPORT # : JAX31729
DATE REPORTED: June 1, 2003

REFERENCE: 4195

PROJECT NAME : Site 283

PAGE 12 OF 13

LABORATORY CERTIFICATIONS

Laboratory Certification: NELAC:E82277

All analyses reported with this project were analyzed by the facility indicated unless identified below.

REPORT # : JAX31729

DATE REPORTED: June 1, 2003

REFERENCE : 4195
PROJECT NAME : Site 283

PAGE 13 OF 13

QUALITY CONTROL DATA

	% RECOVERY	ACCEPT	% RPD	ACCEPT
Parameter	MS/MSD/LCS	LIMITS	MS/MSD	LIMITS
EPA Method 8270				
Naphthalene	58/ 60/ 58	30-112	3	28
Acenaphthene	82/ 84/ 80	28-113	2	32
Benzo(a)pyrene	135/144/129	39-148	6	38
Benzo(g,h,i)perylene	84/100/ 88	20-130	17	43
Naphthalene	62/ 72/ 61	20-131	15	29
Acenaphthene	69/ 86/ 74	24-132	22	23
Benzo(a)pyrene	137/146/122	34-140	6	28
Benzo(g,h,i)perylene	152/183/116	31-152	18	21
Naphthalene	62/ 72/ 72	20-131	15	29
Acenaphthene	69/ 86/ 84	24-132	22	23
Benzo(a)pyrene	137/146/126	34-140	6	28
Benzo(g,h,i)perylene	152/183/104	31-152	18	21

< = Less Than

MS = Matrix Spike
MSD = Matrix Spike Duplicate
LCS = Laboratory Control Standard RPD = Relative Percent Difference

Environmental Conservation Laboratories, Inc.

4810 Executive Park Court, Suite 211 Jacksonville, Florida 32216-6069 904 / 296-3007 Fax 904 / 296-6210 www.encolabs.com

DHRS Certification No. E82277

CLIENT : Tetra Tech NUS

ADDRESS: 8640 Philips Highway

Suite 16

Jacksonville, FL 32256

REPORT #

: JAX30002

DATE SUBMITTED: February 24, 2003

DATE REPORTED : March 7, 2003

PAGE 1 OF 12

ATTENTION: Mr. M. Peterson

SAMPLE IDENTIFICATION

Samples submitted and identified by client as:

REFERENCE: N4195

CTO 230 Tank 283

02/24/03

- MPT-283-SB-17 @ 09:25 - MPT-283-SB-18 @ 09:20 #2 - MPT-283-SB-19 @ 09:30 #3 #4 - MPT-283-SB-20 @ 09:35 - MPT-283-SB-21 @ 09:40 - MPT-283-SB-22 @ 09:41 #6 - MPT-283-SB-23 @ 10:20 #7 - MPT-283-SB-24 @ 10:25 #8 #9 - MPT-283-SB-25 @ 10:50 #10 - MPT-283-SB-26 @ 10:45 #11 - MPT-283-SB-27 @ 12:20 #12 - MPT-283-SB-28 @ 12:30 #13 - MPT-283-SB-29 @ 12:25 #14 - MPT-283-SB-30 @ 13:10 #15 - MPT-283-SB-31 @ 13:05 - MPT-283-SB-32 @ 13:30 #16 #17 - MPT-283-SB-33 @ 13:35

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. This data has been produced in accordance with NELAC Standards (July, 1999). This report shall not be reproduced except in full, without the written approval of the laboratory. Results for these procedures apply only to the samples as submitted.

PROJECT MANAGER Scott D. Martin

REPORT # : JAX30002 DATE REPORTED: March 7, 2003

REFERENCE : N4195

PROJECT NAME : CTO 230 Tank 283

PAGE 2 OF 12

EPA METHOD 8270 -		EPA METHOD 8270 -						
PAH Compounds by SI	<u>M</u>	MPT-283-SB-17	MPT-283-SB-18	Units				
Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Chrysene Benzo(a) anthracene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Indeno(1,2,3-cd) pyrene		3.7 U 3.7 U 3.7 U 3.7 U 3.7 U 7.1 3.7 U 11 8.5 4.0 3.7 6.3 4.0 6.0 3.7 U	11 10 7.7 3.7 U 34 32 340 51 470 330 140 110 200 110 170 180	ug/Kg				
Dibenzo(a,h)anthrac Benzo(q,h,i)perylen		3.7 U 10	87 190	ug/Kg ug/Kg				
Surrogate: p-Terphenyl Date Prepared Date Analyzed		% RECOV 54 02/26/03 03/04/03 10:52	<pre>% RECOV 65 02/26/03 03/04/03 11:13</pre>	LIMITS 19-162				
MISCELLANEOUS	METHOD	MPT-283-SB-17	MPT-283-SB-18	<u>Units</u>				
Percent Solids Date Analyzed	SM2540G	89 02/25/03 12:00	90 02/25/03 12:00	%				

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JAX30002

DATE REPORTED: March 7, 2003

REFERENCE : N4195

PROJECT NAME : CTO 230 Tank 283

PAGE 3 OF 12

EPA METHOD 8270 - PAH Compounds by SI	[M	MPT-283-S	B-19	MPT	-283-SI	3-20	Units
Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Chrysene Benzo(a) anthracene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Indeno(1,2,3-cd) pyr Dibenzo(a,h) anthrace Benzo(g,h,i) peryler	ne ne ne cene	200 190 140 73 U 840 840 8000 1400 9100 6400 3100 2400 3800 2700 3600 2400 1300 2700	D1 D1 D1	ME	18 U 18 U 18 U 18 U 48 48 620 96 790 540 270 190 400 260 320 270 120 300	D2 D	ug/Kg
Surrogate: p-Terphenyl Date Prepared Date Analyzed		% RECO * 02/26/0 03/04/03 1	3		% RECOV * 2/26/03 4/03 18	<u> </u>	<u>LIMITS</u> 19-162
MISCELLANEOUS Percent Solids	METHOD	MPT-283-S	B-19	MPT	!-283-SE 89	3-20	<u>Units</u>
Date Analyzed	SM2540G	02/25/03 1:	2:00	02/2	5/03 12	:00	6

^{* =} Surrogate recovery unavailable due to sample dilution.
U = Compound was analyzed for but not detected to the level shown.
D1 = Analyte value determined from a 1:20 dilution.

D2 = Analyte value determined from a 1:5 dilution.

REPORT # : JAX30002

DATE REPORTED: March 7, 2003

REFERENCE : N4195

PROJECT NAME : CTO 230 Tank 283

PAGE 4 OF 12

EPA METHOD 8270 -							
PAH Compounds by SIM	• . •	MPT-283-S1	B-21	N	MPT-283-S	B-22	Units
Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Chrysene Benzo(a) anthracene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Indeno(1,2,3-cd) pyre Dibenzo(a,h) anthraces Benzo(g,h,i) perylene	ne ne	20 20 18 U 18 U 89 94 830 170 940 670 310 230 360 330 330 280 130 300	D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D	<u> </u>	180 140 88 72 U 590 660 5900 770 5900 4000 1800 1400 2600 1400 1900 1400 720 1600	D1 D1 D1	ug/Kg
Surrogate: p-Terphenyl Date Prepared Date Analyzed		% RECOV * 02/26/03 03/04/03 18	3	03	% RECO * 02/26/03 8/04/03 1	3	LIMITS 19-162
MISCELLANEOUS	METHOD	MPT-283-SI	B-21	<u>N</u>	MPT-283-S	B-22	Units
Percent Solids Date Analyzed	SM2540G	90 02/25/03 12	2:00	02	91 2/25/03 1:	2:00	%

^{* =} Surrogate recovery unavailable due to sample dilution.
U = Compound was analyzed for but not detected to the level shown.
D1 = Analyte value determined from a 1:20 dilution.
D2 = Analyte value determined from a 1:5 dilution.

REPORT # : JAX30002

DATE REPORTED: March 7, 2003

REFERENCE : N4195

PROJECT NAME : CTO 230 Tank 283

PAGE 5 OF 12

EPA METHOD 8270 - PAH Compounds by SI	M	MPT-283-SB-23	MPT-283-SB-24	Units
Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Chrysene Benzo(a) anthracene Benzo(b) fluoranthen Benzo(a) pyrene Indeno(1,2,3-cd) pyr Dibenzo(a,h) anthrace Benzo(g,h,i) perylene	e e ene ene	3.8 U 3.8 U 3.8 U 12 10 110 19 160 120 64 49 95 60 76 79 37 91	96 D1 96 D1 80 D1 73 U D1 440 D1 4400 D1 4200 D1 820 D1 5100 D1 3600 D1 1800 D1 1300 D1 2700 D1 1800 D1 2700 D1 1600 D1 730 D1 730 D1 7700 D1	ug/Kg
Surrogate: p-Terphenyl Date Prepared Date Analyzed		<pre>% RECOV 57 02/26/03 03/04/03 13:02</pre>	% RECOV * 02/26/03 03/04/03 19:41	<u>LIMITS</u> 19-162
MISCELLANEOUS	METHOD	MPT-283-SB-23	MPT-283-SB-24	Units
Percent Solids Date Analyzed	SM2540G	86 02/25/03 12:00	90 02/25/03 12:00	9,6

^{* =} Surrogate recovery unavailable due to sample dilution.

U = Compound was analyzed for but not detected to the level shown.

D1 = Analyte value determined from a 1:20 dilution.

REPORT # : JAX30002

DATE REPORTED: March 7, 2003

REFERENCE : N4195

PROJECT NAME : CTO 230 Tank 283

PAGE 6 OF 12

EPA METHOD 8270 - PAH Compounds by SIM	MPT-283-SB-25	MPT-283-SB-26	Units
Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Chrysene Benzo(a) anthracene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Indeno(1,2,3-cd) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene	86 D1 71 D1 71 U D1 71 U D1 390 D1 430 D1 3600 D1 860 D1 3900 D1 2600 D1 1200 D1 1200 D1 1000 D1 1700 D1 1100 D1 1400 D1 1400 D1 1400 D1 1400 D1 1300 D1	36 U D3 36 U D3 36 U D3 36 U D3 140 D3 140 D3 140 D3 1300 D3 1700 D3 1700 D3 1200 D3 590 D3 480 D3 820 D3 620 D3 670 D3 580 D3 580 D3 580 D3 660 D3	ug/Kg
Surrogate: p-Terphenyl Date Prepared Date Analyzed	% RECOV * 02/26/03 03/04/03 20:02	% RECOV * 02/26/03 03/04/03 20:24	LIMITS 19-162
MISCELLANEOUS METHOD Percent Solids SM2540G Date Analyzed	MPT-283-SB-25 93 02/25/03 12:00	MPT-283-SB-26 92 02/25/03 12:00	<u>Units</u> %

^{* =} Surrogate recovery unavailable due to sample dilution.

U = Compound was analyzed for but not detected to the level shown.

D1 = Analyte value determined from a 1:20 dilution.

D3 = Analyte value determined from a 1:10 dilution.

REPORT # : JAX30002

DATE REPORTED: March 7, 2003

REFERENCE : N4195

PROJECT NAME : CTO 230 Tank 283

PAGE 7 OF 12

EPA METHOD 8270 - PAH Compounds by	SIM	MPT-283-SE	3-27	MPT-283-SI	B-28	Units
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Chrysene Benzo(a) anthracen Benzo(b) fluoranth Benzo(k) fluoranth Benzo(a) pyrene Indeno(1,2,3-cd)p Dibenzo(a,h) anthr Benzo(g,h,i) peryl	e ene ene yrene acene	36 U 36 U 36 U 140 150 1300 310 1600 1100 580 470 980 400 680 530 220 590	D3 D	820 760 500 180 U 2600 2800 22000 4300 25000 17000 7100 6000 9800 5400 8700 6000 3000 6000	D4 D	ug/Kg
Surrogate: p-Terphenyl Date Prepared Date Analyzed		% RECOV * 02/26/03 03/04/03 20:46		% RECOV * 02/26/03 03/04/03 23	3	<u>LIMITS</u> 19-162
MISCELLANEOUS	METHOD	MPT-283-SE	3-27	MPT-283-SI	3-28	Units

MISCELLANEOUS	METHOD	MPT-283-SB-27	MPT-283-SB-28	Units
Percent Solids Date Analyzed	SM2540G	91 02/25/03 12:00	92 02/25/03 12:00	%

^{* =} Surrogate recovery unavailable due to sample dilution.

U = Compound was analyzed for but not detected to the level shown.

D3 = Analyte value determined from a 1:10 dilution.

D4 = Analyte value determined from a 1:50 dilution.

REPORT # : JAX30002

DATE REPORTED: March 7, 2003

REFERENCE : N4195

PROJECT NAME : CTO 230 Tank 283

PAGE 8 OF 12

EPA METHOD 8270 - PAH Compounds by SIM	MPT-283-SB-29	MPT-283-SB-30	Units
Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Chrysene Benzo(a) anthracene Benzo(b) fluoranthene Benzo(a) pyrene Indeno(1,2,3-cd) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene	18 U D2 90 D2 90 D2 690 D2 170 D2 800 D2 530 D2 280 D2 230 D2 230 D2 230 D2 230 D2 270 D2 64 D2 300 D2	3.8 U 3.8 U 3.8 U 3.8 U 11 10 120 16 150 100 50 39 77 54 58 6.4 24 60	ug/Kg
Surrogate: p-Terphenyl Date Prepared Date Analyzed	% RECOV * 02/26/03 03/04/03 21:29	% RECOV 60 02/26/03 03/04/03 15:34	<u>LIMITS</u> 19-162
MISCELLANEOUS METHOD	MPT-283-SB-29	MPT-283-SB-30	Units
Percent Solids SM2540G Date Analyzed	94 02/25/03 12:00	88 02/25/03 12:00	%

 $[\]star$ = Surrogate recovery unavailable due to sample dilution. U = Compound was analyzed for but not detected to the level shown. D2 = Analyte value determined from a 1:5 dilution.

REPORT # : JAX30002

DATE REPORTED: March 7, 2003

REFERENCE : N4195

PROJECT NAME : CTO 230 Tank 283

PAGE 9 OF 12

EPA METHOD 8270 - PAH Compounds by SI	<u>. M</u>	MPT-283-SE	3-31	MPT-283-SB-32	<u>Units</u>
Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Chrysene Benzo(a) anthracene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Indeno(1,2,3-cd) pyr Dibenzo(a,h) anthrace Benzo(g,h,i) perylene	ne ne rene cene	260 240 180 U 180 U 1000 1000 8900 2000 10000 7200 3300 2900 4900 3600 3800 3100 1400 3400	D4 D	3.6 U 3.6 U 3.6 U 7.2 6.8 87 13 130 98 50 38 78 63 61 59 27 66	ug/Kg
Surrogate: p-Terphenyl Date Prepared Date Analyzed		<pre>% RECOV * 02/26/03 03/04/03 21</pre>		<pre>% RECOV 57 02/26/03 03/04/03 16:17</pre>	LIMITS 19-162
MISCELLANEOUS	METHOD	MPT-283-SB	-31	MPT-283-SB-32	Units
Percent Solids Date Analyzed	SM2540G	90 02/25/03 12	:00	92 02/25/03 12:00	%

 $[\]star$ = Surrogate recovery unavailable due to sample dilution. U = Compound was analyzed for but not detected to the level shown. D4 = Analyte value determined from a 1:50 dilution.

REPORT # : JAX30002

DATE REPORTED: March 7, 2003

REFERENCE : N4195

PROJECT NAME : CTO 230 Tank 283

PAGE 10 OF 12

EPA METHOD 8270 -			
PAH Compounds by SIM	MPT-283-SB-33	LAB BLANK	Units
Naphthalene	3.9 U	3.3 U	ug/Kg
2-Methylnaphthalene	3.9 U	3.3 U	ug/Kg
1-Methylnaphthalene	3.9 U	3.3 U	ug/Kg
Acenaphthylene	3.9 U	3.3 U	ug/Kg
Acenaphthene	3.9 U	3.3 U	ug/Kg
Fluorene	3.9 U	3.3 U	ug/Kg
Phenanthrene	3.9 U	3.3 U	ug/Kg
Anthracene	3.9 U	3.3 U	ug/Kg
Fluoranthene	3.9 U	3.3 U	ug/Kg
Pyrene	3.9 U	3.3 U	ug/Kg
Chrysene	3.9 U	3.3 U	ug/Kg
Benzo(a) anthracene	3.9 U	3.3 U	ug/Kg
Benzo(b) fluoranthene	3.9 U	3.3 U	ug/Kg
Benzo(k)fluoranthene	3.9 U	3.3 U	ug/Kg
Benzo(a) pyrene	3.9 U	3.3 U	ug/Kg
Indeno(1,2,3-cd)pyrene	3.9 U	3.3 U	ug/Kg
Dibenzo(a,h)anthracene	3.9 U	3.3 U	ug/Kg
Benzo(g,h,i)perylene	3.9 U	3.3 U	ug/Kg
Surrogate:	% RECOV	% RECOV	LIMITS
p-Terphenyl	55	64	19-162
Date Prepared	02/26/03	02/26/03	
Date Analyzed	03/04/03 16:39	03/04/03 09:25	

MISCELLANEOUS	METHOD	MPT-283-SB-33	LAB BLANK	Units
Percent Solids Date Analyzed	SM2540G	84 02/25/03 12:00	NA	0/0

NA = Analysis not applicable for this sample.

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JAX30002

DATE REPORTED: March 7, 2003

REFERENCE : N4195

PROJECT NAME : CTO 230 Tank 283

PAGE 11 OF 12

LABORATORY CERTIFICATIONS

Laboratory Certification: FDEP:910190 NELAC:E82277

All analyses reported with this project were analyzed by the facility indicated unless identified below.

REPORT # : JAX30002

DATE REPORTED: March 7, 2003

REFERENCE : N4195

PROJECT NAME : CTO 230 Tank 283

PAGE 12 OF 12

QUALITY CONTROL DATA

<u>Parameter</u>	% RECOVERY MS/MSD/LCS	ACCEPT LIMITS	% RPD MS/MSD	ACCEPT LIMITS
EPA Method 8270				
Naphthalene	*/ * / 62	20-131	<1	29
Acenaphthene	*/ * / 58	24-132	<1	23
Benzo(a)pyrene	* */ * / 72	34-140	<1	28
Benzo(g,h,i)perylene	*/ * /126	31-152	< 1	21
MISCELLANEOUS Percent Solids, SM2540G	NA/ NA/100	- -	NA	

< = Less Than

MS = Matrix Spike

MSD = Matrix Spike Duplicate

LCS = Laboratory Control Standard RPD = Relative Percent Difference

* = MS/MSD/RPD unavailable due to high original sample concentration.

CHAIN OF CUSTODY

NUMBER

page <u>| OF 2</u>

PROJECT NO: W4195 FACILITY: .	+283	PROJE	CT MA	NAGER	Kon) P	HONE NL 904)/	MBER 36	612	5 6	ABORA	TORY I	NAME A	ND CON	NTACT:	
SAMPLERS (SIGNATURE)		FIELD OPERATIONS LEADER				P	PHONE NUMBER ADDRESS								10 711	
Tet Strull	-	DAVE SIEFEEN (CARRIER/WAYBILL NUMBER					(904)636-6125 4810 Executive Pk. Ct. Suite Z11 CITY, STATE									
	1	NOWE JACKSONVILLE, FL, BZZIO									ي ي					
								AINER		SS (G)		V/	/		//	
STANDARD TAT	day			D, QC,				ERVAT	VE		Hone					
	day		_	×, S	8	S			£ /	1.00		/	//	/	//	
2003	LOCATION ID	тор бертн (FT)	ВОТТОМ DEPTH (FT)	MATRIX (GW, SO, SW, SD, ETC.)	COLLECTION METHOD GRAP (G)	CONTAINERS	TIPE	0	\$ /3	His			//			
AA TIME SAMDLE ID	ОСАТ	OP DE	отто	IATRI) TC.)	OLLE RAP (No. OF		6H	//	//			//		/ m	MAENTS
TIME SAMPLE ID				 	1			<u> </u>	<u>/</u>		_	/_		-1		
2/24 0925 MPT-283-5B-17		3	3	50	G	- 	11,								*SEE	TTACHO
2/24 0920 MPT-283-5B-18		3	3	50	G											
2124 0930 MPT-283-SB-19		3	3	SO	G		1									
2/24 0935 MPT-283-SB-20		3	3	So	G		1									
2/24 0940 MPT-283-SB-21		3	3	50	G	1	1									
2174 0941 MPT-283-SB-22		3	3	50	6	l										
2/24 1020 MPT-283-5B-23		3	3	50	G	1										
2/24 1025 MPT-283-SB-24		W	3	50	G	l	1									
2/24 1050 MPT-283-5B-25		3	3	50	G	1	1									
2124 1045 MPT-283-5B-26		3	3	so	G	1	Ti									
2/24 1220 MPT-283-58-27		3	3	SO	6	1	1									
2/24 1730 MPT-283-5B-28		3	3	50	G	ı	1									
1/24 1735 MPT-283-58-29 1. RELINATUSHED BY		3	3	50	G	l	1									
1. RELINATUSHED BY		DATE	24-	03	FIME OF	7	RECEIVE	D BY	KH o	- \	AX:	300	72	DA	2410	TIME
2. RELINQUISHED BY		DATE			TIME	2.	RECEIVE	D BY	1		, v. L			DA	TE TE	TIME
3. RELINQUISHED BY		DATE		+	TIME	3. 1	RECEIVE	D BY	\supset					DA.	TE	TIME
COMMENTS												engelight (Australian and Arthur any Arthur				

[
	TETRA TECH NUS, INC.

CHAIN OF CUSTODY

NUMBER

PAGE 2 OF 2

PROJECT NO: HALLEY CTO 230 TANK	283	PROJE	CT MA	NAGER	(2/L) LEADER	P	HONE NU 904)(HONE NU	MBER	6125	- L	ABORA En	TORY	NAME A	HRI'S	NTACT:	4	
SAMPLERS (SIGNATURE)		PAV.	ES7 ER/WA	ET-KE	LEADER JUMBER	P	904)	IMBER 636	-60	25/1	810 E	Xec ATE	wtu	e. Pic	2.Ct.	Surtez	U
		Noi	NE					AINER	TYPE or GLAS			sanv. U	THE	P	322	///	7
STANDARD TAT	dav			Ö, QC,				ERVAT		/	OOME						_
DATE 2003 TIME SAMPLE ID	LOCATION ID	тор DЕРТН (FT)	ВОТТОМ DEPTH (FT)	MATRIX (GW, SO, SW, SD, ETC.)	COLLECTION METHOD GRAP (G)	No. OF CONTAINERS	THE	C MIL	*4	//						COMMENTS	
2/24 1310 WIDT-283-5B-30		3	3	50	G	1									XSIE	ATTACHER	2
2/24 1305 MPT-283-SB-31		3	3	SO	6)	1										
2/24 1330 MPT-283-SB-32		3	3	50	6	1	l										
2124 1335 MAT-283-SB-33		3	3	50	6	l	1										
																	-
																TIME	
RELINQUISHED BY 2. RELINQUISHED BY		DATE.	20 -		TIME 「ME		RECEIVE RECEIVE	D BA	44	1	XE	300	υZ	DA 2 DA	15 24/03	TIME TIME	
3. RELINQUISHED BY COMMENTS		DATE			ГІМЕ		RECEIVE	(<u> </u>					DA	.ΤΕ	TIME	